Some Lie algebras and groups associated to representations of Leibniz algebras

被引:1
|
作者
Tang, Rong [1 ]
Tan, Youjun [2 ]
Xu, Senrong [3 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
[2] Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
[3] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
关键词
Leibniz algebras; cohomology; derivations; automorphisms; ABELIAN EXTENSIONS; AUTOMORPHISMS;
D O I
10.1142/S0219498825500264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a representation (M; l, r) of a Leibniz algebra g, let D(g, M) (respectively, G(g, M)) be the Lie algebra (respectively, the group) of diagonal derivations (respectively, automorphisms) of the semidirect product g x M. We show that both D(g, M) and G(g, M) have a representation on the cohomology group HL2(g, M). In the case that (M; l, r) arises from an abelian extension of g by M, such representations are applied to construct exact sequences of Wells type for D(g, M) and G(g, M), respectively.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Leibniz Algebras and Lie Algebras
    Mason, Geoffrey
    Yamskulna, Caywalee
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [2] On Some Properties of Lie-Centroids of Leibniz Algebras
    José Manuel Casas Mirás
    Xabier García-Martínez
    Natalia Pacheco-Rego
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 3499 - 3520
  • [3] A class of Lie racks associated to symmetric Leibniz algebras
    Abchir, Hamid
    Abid, Fatima-Ezzahrae
    Boucetta, Mohamed
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (11)
  • [4] From Leibniz Algebras to Lie 2-algebras
    Sheng, Yunhe
    Liu, Zhangju
    ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (01) : 1 - 5
  • [5] From Leibniz Algebras to Lie 2-algebras
    Yunhe Sheng
    Zhangju Liu
    Algebras and Representation Theory, 2016, 19 : 1 - 5
  • [6] FAITHFUL REPRESENTATIONS OF LEIBNIZ ALGEBRAS
    Barnes, Donald W.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (09) : 2991 - 2995
  • [7] Representations of Lie algebras
    Futorny, Vyacheslav
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (01): : 131 - 156
  • [8] Derivations, automorphisms, and representations of complex -Lie algebras
    Chen, Yin
    Zhang, Ziping
    Zhang, Runxuan
    Zhuang, Rushu
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (02) : 708 - 726
  • [9] Lie theory for symmetric Leibniz algebras
    Jibladze, Mamuka
    Pirashvili, Teimuraz
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2020, 15 (01) : 167 - 183
  • [10] Lie theory for symmetric Leibniz algebras
    Mamuka Jibladze
    Teimuraz Pirashvili
    Journal of Homotopy and Related Structures, 2020, 15 : 167 - 183