Some Lie algebras and groups associated to representations of Leibniz algebras

被引:1
作者
Tang, Rong [1 ]
Tan, Youjun [2 ]
Xu, Senrong [3 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
[2] Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
[3] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
关键词
Leibniz algebras; cohomology; derivations; automorphisms; ABELIAN EXTENSIONS; AUTOMORPHISMS;
D O I
10.1142/S0219498825500264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a representation (M; l, r) of a Leibniz algebra g, let D(g, M) (respectively, G(g, M)) be the Lie algebra (respectively, the group) of diagonal derivations (respectively, automorphisms) of the semidirect product g x M. We show that both D(g, M) and G(g, M) have a representation on the cohomology group HL2(g, M). In the case that (M; l, r) arises from an abelian extension of g by M, such representations are applied to construct exact sequences of Wells type for D(g, M) and G(g, M), respectively.
引用
收藏
页数:20
相关论文
共 15 条
[1]   Extensions and automorphisms of Lie algebras [J].
Bardakov, Valeriy G. ;
Singh, Mahender .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (09)
[2]   Abelian extensions of Leibniz algebras [J].
Casas, JM ;
Faro, E ;
Vieites, AM .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (06) :2833-2846
[3]   COHOMOLOGICAL CRITERION FOR EXTENDING DERIVATIONS [J].
DATSKOVSKY, BA ;
STITZINGER, E .
JOURNAL OF ALGEBRA, 1988, 119 (02) :298-307
[4]  
Demir I., 2014, Recent advances in representation theory, quantum groups, algebraic geometry, and related topics, V623, P41
[5]   On Leibniz cohomology [J].
Feldvoss, Jorg ;
Wagemann, Friedrich .
JOURNAL OF ALGEBRA, 2021, 569 :276-317
[6]   KOSZUL DUALITY FOR OPERADS [J].
GINZBURG, V ;
KAPRANOV, M .
DUKE MATHEMATICAL JOURNAL, 1994, 76 (01) :203-272
[7]   The Wells exact sequence for the automorphism group of a group extension [J].
Jin, Ping ;
Liu, Heguo .
JOURNAL OF ALGEBRA, 2010, 324 (06) :1219-1228
[8]   On non-abelian extensions of Leibniz algebras [J].
Liu, Jiefeng ;
Sheng, Yunhe ;
Wang, Qi .
COMMUNICATIONS IN ALGEBRA, 2018, 46 (02) :574-587
[9]  
Loday J.-L., 1997, FIELDS I COMMUN, V17, P91
[10]   UNIVERSAL ENVELOPING-ALGEBRAS OF LEIBNIZ ALGEBRAS AND (CO)HOMOLOGY [J].
LODAY, JL ;
PIRASHVILI, T .
MATHEMATISCHE ANNALEN, 1993, 296 (01) :139-158