Genome-wide identification and evolutionary analysis of the FGF gene family in buffalo

被引:1
|
作者
Hassan, Faiz-ul [1 ]
Deng, Tingxian [2 ,3 ]
Rehman, Muhammad Saif-ur [1 ]
Rehman, Zia-ur [4 ]
Sarfraz, Saad [5 ]
Mushahid, Muhammad [1 ]
Rehman, Saif Ur [6 ]
机构
[1] Univ Agr Faisalabad, Inst Anim & Dairy Sci, Fac Anim Husb, Faisalabad 38040, Pakistan
[2] Chinese Acad Agr Sci, Key Lab Buffalo Genet Breeding & Reprod Technol, Minist Agr, Nanning, Peoples R China
[3] Chinese Acad Agr Sci, Guangxi Buffalo Res Inst, Nanning, Peoples R China
[4] Univ Agr Faisalabad, Faisalabad Sub Campus Toba Tek Sing, Faisalabad, Pakistan
[5] Univ Agr Faisalabad, Ctr Agr Biochem & Biotechnol CABB, Faisalabad, Pakistan
[6] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Dept Reprod Med, Guangzhou 510080, Peoples R China
关键词
FGF gene family; buffalo; enomic characterization; mutations; gene duplications; FIBROBLAST-GROWTH-FACTOR; EXPRESSION PATTERNS; PRIMITIVE ENDODERM; PROTEIN-STRUCTURE; SEQUENCE; BOVINE; SEGREGATION; MECHANISMS; EMBRYOS; ROLES;
D O I
10.1080/07391102.2023.2256861
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fibroblast growth factors (FGFs) are important polypeptide growth factors that play a critical role in many developmental processes, including differentiation, cell proliferation, and migration in mammals. This study employs in silico analyses to characterize the FGF gene family in buffalo, investigating their genome-wide identification, physicochemical properties, and evolutionary patterns. For this purpose, genomic and proteomic sequences of buffalo, cattle, goat, and sheep were retrieved from NCBI database. We identified a total of 22 FGF genes in buffalo. Physicochemical properties observed through ProtParam tool showed notable features of these proteins including in-vitro instability, thermostability, hydrophilicity, and basic nature. Phylogenetic analysis grouped 22 identified genes into nine sub-families based on evolutionary relationships. Additionally, analysis of gene structure, motif patterns, and conserved domains using TBtools revealed the remarkable conservation of this gene family across selected species throughout the course of evolution. Comparative amino acid analysis performed through ClustalW demonstrated significant conservation between buffalo and cattle FGF proteins. Mutational analysis showed three non-synonymous mutations at positions R103 > G, P7 > L, and E98 > Q in FGF4, FGF6, and FGF19, respectively in buffalo. Duplication events revealed only one segmental duplication (FGF10/FGF22) in buffalo and two in cattle (FGF10/FGF22 and FGF13/FGF13-like) with Ka/Ks values <1 indicating purifying selection pressure for these duplications. Comparison of protein structures of buffalo, goat, and sheep exhibited more similarities in respective structures. In conclusion, our study highlights the conservation of the FGF gene family in buffalo during evolution. Furthermore, the identified non-synonymous mutations may have implications for the selection of animals with better performance.
引用
收藏
页码:10225 / 10236
页数:12
相关论文
共 50 条
  • [31] Genome-wide identification of the SPL gene family in Dichanthelium oligosanthes
    Hussain, Sajid
    Nanda, Satyabrata
    BIOINFORMATION, 2019, 15 (03) : 165 - 170
  • [32] Genome-wide analysis of the WRKY gene family in cotton
    Dou, Lingling
    Zhang, Xiaohong
    Pang, Chaoyou
    Song, Meizhen
    Wei, Hengling
    Fan, Shuli
    Yu, Shuxun
    MOLECULAR GENETICS AND GENOMICS, 2014, 289 (06) : 1103 - 1121
  • [33] Genome-wide identification, evolution and transcriptome analysis of GRAS gene family in Chinese chestnut (Castanea mollissima)
    Yu, Liyang
    Hui, Cai
    Huang, Ruimin
    Wang, Dongsheng
    Fei, Cao
    Guo, Chunlei
    Zhang, Jingzheng
    FRONTIERS IN GENETICS, 2023, 13
  • [34] Genome-wide analysis of the IQD gene family in maize
    Cai, Ronghao
    Zhang, Congsheng
    Zhao, Yang
    Zhu, Kejun
    Wang, Yufu
    Jiang, Haiyang
    Xiang, Yan
    Cheng, Beijiu
    MOLECULAR GENETICS AND GENOMICS, 2016, 291 (02) : 543 - 558
  • [35] Genome-wide identification, evolution, and expression analysis of the bone morphogenetic protein gene family in Myxocyprinus asiaticus
    Zhang, Yizheng
    Zhang, Meng
    Yu, Jinhui
    Ma, Zhigang
    Chen, Xin
    Tang, Yongtao
    Zhou, Chuanjiang
    Li, Qiang
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS, 2025, 54
  • [36] Genome-Wide Analysis of mir-548 Gene Family Reveals Evolutionary and Functional Implications
    Liang, Tingming
    Guo, Li
    Liu, Chang
    JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2012,
  • [37] Genome-wide identification and expression analysis of heat shock protein gene family in cassava
    Wang, Changyi
    Ran, Fangfang
    Zang, Yuwei
    Liu, Liangwang
    Wang, Dayong
    Min, Yi
    PLANT GENOME, 2023, 16 (04)
  • [38] Genome-wide identification and expression analysis of the xyloglucan endotransglucosylase/hydrolase gene family in poplar
    Zihan Cheng
    Xuemei Zhang
    Wenjing Yao
    Yuan Gao
    Kai Zhao
    Qing Guo
    Boru Zhou
    Tingbo Jiang
    BMC Genomics, 22
  • [39] Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume
    Zhou, Yuzhen
    Xu, Zongda
    Zhao, Kai
    Yang, Weiru
    Cheng, Tangren
    Wang, Jia
    Zhang, Qixiang
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [40] Genome-Wide Identification and Gene Expression Analysis of the OTU DUB Family in Oryza sativa
    Liu, Qiannan
    Yan, Tingyun
    Tan, Xiaoxiang
    Wei, Zhongyan
    Li, Yanjun
    Sun, Zongtao
    Zhang, Hehong
    Chen, Jianping
    VIRUSES-BASEL, 2022, 14 (02):