Meta-path fusion based neural recommendation in heterogeneous information networks

被引:9
作者
Tan, Lei [1 ]
Gong, Daofu [1 ]
Xu, Jinmao [1 ]
Li, Zhenyu [1 ]
Liu, Fenlin [1 ]
机构
[1] PLA Strateg Support Force Informat Engn Univ, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Recommendation; Neural networks; Heterogeneous information network; Meta-path;
D O I
10.1016/j.neucom.2023.01.070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a powerful data modeling tool, Heterogeneous Information Network (HIN) has been successfully used in auxiliary information exploitation to boost recommendation performance. For HIN based recommen-dation, it is challenging to extract and fuse useful features of user preferences and item attributes under different semantic paths in HINs. Existing methods leverage a pre-defined fusion function to integrate different semantics for recommendation, which cannot characterize the complex nonlinear interactions between users and items. In this paper, we present a general framework named MNRec, short for Meta-path fusion based Neural Recommendation, to extract and fuse user and item embeddings under different meta-paths for recommendation. Under the framework, we propose an instantiation of MNRec with Multi-Layer Perceptron (MLP) structure. It consists of two major steps, i.e., meta-path based heteroge-neous network embedding and deep learning based rating prediction. Concretely, appropriate meta-paths are first designed according to domain knowledge. Then the embeddings of users and items are obtained through a meta-path and commuting matrix based heterogeneous network embedding method. Finally, in light of the powerful nonlinear modeling capabilities of deep neural networks, the learned embeddings under different meta-paths are integrated into a two-pathway MLP structure for rating pre-diction. Experimental results on three real-world datasets demonstrate the superiority and effectiveness of MNRec compared with state-of-the-art baselines in rating prediction.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:236 / 248
页数:13
相关论文
共 42 条
  • [1] PME: Projected Metric Embedding on Heterogeneous Networks for Link Prediction
    Chen, Hongxu
    Yin, Hongzhi
    Wang, Weiqing
    Wang, Hao
    Quoc Viet Hung Nguyen
    Li, Xue
    [J]. KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1177 - 1186
  • [2] Deng ZH, 2019, AAAI CONF ARTIF INTE, P61
  • [3] node2vec: Scalable Feature Learning for Networks
    Grover, Aditya
    Leskovec, Jure
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 855 - 864
  • [4] Contextual and Sequential User Embeddings for Large-Scale Music Recommendation
    Hansen, Casper
    Hansen, Christian
    Maystre, Lucas
    Mehrotra, Rishabh
    Brost, Brian
    Tomasi, Federico
    Lalmas, Mounia
    [J]. RECSYS 2020: 14TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2020, : 53 - 62
  • [5] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [6] He XN, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2227
  • [7] Neural Collaborative Filtering
    He, Xiangnan
    Liao, Lizi
    Zhang, Hanwang
    Nie, Liqiang
    Hu, Xia
    Chua, Tat-Seng
    [J]. PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), 2017, : 173 - 182
  • [8] Evaluating collaborative filtering recommender systems
    Herlocker, JL
    Konstan, JA
    Terveen, K
    Riedl, JT
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2004, 22 (01) : 5 - 53
  • [9] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    [J]. NEURAL NETWORKS, 1989, 2 (05) : 359 - 366
  • [10] Are Meta-Paths Necessary? Revisiting Heterogeneous Graph Embeddings
    Hussein, Rana
    Yang, Dingqi
    Cudre-Mauroux, Philippe
    [J]. CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 437 - 446