E-Bayesian estimation for the parameters and hazard function of Gompertz distribution based on progressively type-II right censoring with application

被引:7
作者
El-Din, Marwa M. Mohie M. [1 ]
Sharawy, Ali [1 ]
Abu-Moussa, Mahmoud H. H. [2 ]
机构
[1] Egyptian Russian Univ, Fac Engn, Dept Math & Nat Sci, Badr, Egypt
[2] Cairo Univ, Fac Sci, Dept Math, Giza 12613, Egypt
关键词
Bayesian estimation; E-Bayesian estimation; Gompertz distribution; maximum likelihood estimation; progressive type-II right censored data;
D O I
10.1002/qre.3292
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
E-Bayesian inference is of incremental significance in the area related to the reliability of industrial products dealing with censored data sets. In this article, based on the progressive Type-II right censored order statistics (PTIIRCOS), the E-Bayesian estimates (E-BE) for the parameters of Gompertz distribution (GD) and its hazard function are obtained and compared with the maximum likelihood (MLE) and Bayesian (BE) estimates. The squared error loss function (SE), linear-exponential loss function (LINEX), and Al-Bayyati loss function (ALB) are considered for the methods of BE and E-BE. Some properties for the E-BE estimates are discussed based on PTIIRCOS. Real data is established to clear the theoretical procedures. Akaike information criterion (AIC) is used to prove that GD is the best to model the data compared to other competitors and could potentially be very adequate in describing and modeling industrial products data. Finally, simulation study has been operated for comparing the E-BEs with the MLEs and BEs.
引用
收藏
页码:1299 / 1317
页数:19
相关论文
共 21 条
[1]   Statistical Inference for Gompertz Distribution Using the Adaptive-General Progressive Type-II Censored Samples [J].
Abu-Moussa M.H. ;
El-Din M.M.M. ;
Mosilhy M.A. .
American Journal of Mathematical and Management Sciences, 2021, 40 (03) :189-211
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]  
Al-Aboud FM., 2009, INT MATH FORUM, V4, P1603
[4]  
Al-Bayyatis HN., 2002, THESIS BAGHDAD U
[5]  
[Anonymous], 2004, LECT NOTES BAYESIAN
[6]   Progressive type II censored order statistics from exponential distributions [J].
Balakrishnan, N ;
Cramer, E ;
Kamps, U ;
Schenk, N .
STATISTICS, 2001, 35 (04) :537-556
[7]  
Balakrishnan N., 1996, Sankhy?: The Indian Journal of Statistics, Series B (1960-2002), V58, P1
[8]  
Bernardo J., 1994, Bayesian theory wiley, P49, DOI DOI 10.1002/9780470316870
[9]  
El-Din M. M., 2019, Ann. Data Sci., V6, P673, DOI [10.1007/s40745-019-00199-3, DOI 10.1007/S40745-019-00199-3]
[10]  
El-Din M. M., 2017, Int. J. Adv. Stat. Probab., V5, P52, DOI [10.14419/ijasp.v5i1.7524, DOI 10.14419/IJASP.V5I1.7524]