Bond performance of corroded rebars in sustainable alkali-activated slag-based concrete incorporating steel fibers

被引:8
|
作者
Li, Qi [1 ,2 ]
Ren, Zhigang [1 ,2 ]
Su, Xin [2 ]
Li, Peipeng [1 ,2 ]
机构
[1] Wuhan Univ Technol, Sch Civil Engn & Architecture, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Sanya Sci & Educ Innovat Pk, Sanya 572000, Peoples R China
来源
JOURNAL OF BUILDING ENGINEERING | 2024年 / 85卷
关键词
Bond performance; Alkali-activated concrete; Steel fiber; Corrosion degree; REINFORCED GEOPOLYMER; CORROSION; STRENGTH; BARS; CRACKING;
D O I
10.1016/j.jobe.2024.108689
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, the bond performance between corroded rebar and steel fiber reinforced alkaliactivated concrete (AAC) was investigated. The effects of the fiber content, corrosion degree, and rebar diameter were analyzed. The results showed a 30.7% enhancement in the bond strength by incorporating copper-coated steel fibers into AAC. The loss of copper increased the corrosioninduced bond strength degradation, which intensified with an increase in the fiber content. Steel fibers with a volume content of 0.5% were observed to be less susceptible to corrosion and could improve concrete brittleness and bond strength. A corrosion degree of 2% improved the bond by forming filled and frictional corrosion products, whereas a corrosion degree of 4% diminished it. The adverse impact of corrosion was more pronounced in rebars with smaller diameters owing to their lower rib heights. The established mesoscale finite-element model can accurately simulate the stress state of concrete and fibers. This paper proposes and validates an equation to determine the bond strength between fiber reinforced AAC and the corroded rebar by using testing results and literature data.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Development of sustainable slag-based alkali-activated concrete incorporating fly ash at ambient curing conditions
    Pradhan, Shashwati Soumya
    Mishra, Umesh
    Biswal, Sushant Kumar
    Jangra, Parveen
    ENERGY ECOLOGY AND ENVIRONMENT, 2024, 9 (05) : 563 - 577
  • [2] Bond performance of steel rebar in alkali-activated slag-based concrete after exposure to elevated temperature
    Liu, Yuzhong
    Hwang, Hyeon-Jong
    Mao, Yuguang
    Du, Yunxing
    Su, Jie
    Hu, Xiang
    Shi, Caijun
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 394
  • [3] Performance of an alkali-activated slag concrete reinforced with steel fibers
    Bernal, Susan
    De Gutierrez, Ruby
    Delvasto, Silvio
    Rodriguez, Erich
    CONSTRUCTION AND BUILDING MATERIALS, 2010, 24 (02) : 208 - 214
  • [4] Flexural behavior of alkali-activated slag-based concrete beams
    Du, Yunxing
    Wang, Jia
    Shi, Caijun
    Hwang, Hyeon-Jong
    Li, Ning
    ENGINEERING STRUCTURES, 2021, 229 (229)
  • [5] Effect of Corrosion on the Bond Behavior of Steel-Reinforced, Alkali-Activated Slag Concrete
    Cui, Yifei
    Qu, Shihao
    Gao, Kaikai
    Tekle, Biruk Hailu
    Bao, Jiuwen
    Zhang, Peng
    MATERIALS, 2023, 16 (06)
  • [6] Mechanical and durability properties of steel, polypropylene and polyamide fiber reinforced slag-based alkali-activated concrete
    Kuranli, Omer Faruk
    Uysal, Mucteba
    Abbas, Mele Tidjani
    Cosgun, Turgay
    Nis, Anil
    Aygormez, Yurdakul
    Canpolat, Orhan
    Al-mashhadani, Mukhallad M.
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2023, 27 (01) : 114 - 139
  • [7] A mixture proportioning method for the development of performance-based alkali-activated slag-based concrete
    Li, Ning
    Shi, Caijun
    Zhang, Zuhua
    Zhu, Deju
    Hwang, Hyeon-Jong
    Zhu, Yuhan
    Sun, Tengjiao
    CEMENT & CONCRETE COMPOSITES, 2018, 93 : 163 - 174
  • [8] Effects of rice husk ash on strength and durability performance of slag-based alkali-activated concrete
    Pradhan, Shashwati Soumya
    Mishra, Umesh
    Biswal, Sushant Kumar
    Pramanik, Subhadip
    Jangra, Parveen
    Aslani, Farhad
    STRUCTURAL CONCRETE, 2024, 25 (04) : 2839 - 2854
  • [9] Enhancement of Bond Performance of FRP Bars with Seawater Coral Aggregate Concrete by Utilizing Ecoefficient Slag-Based Alkali-Activated Materials
    Zhang, Bai
    Zhu, Hong
    Dong, Zhiqiang
    Wang, Qiang
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2022, 26 (01)
  • [10] Using alkali-activated slag ferrocement to strengthen corroded reinforced concrete columns
    Fang, Shuai
    Lam, Eddie Siu-Shu
    Wong, Wing-Ying
    MATERIALS AND STRUCTURES, 2017, 50 (01)