Factors affecting the cleavage efficiency of the CRISPR-Cas9 system

被引:4
|
作者
Jung, Won Jun [1 ,2 ]
Park, Soo-Ji [1 ,2 ]
Cha, Seongkwang [1 ,3 ]
Kim, Kyoungmi [1 ,2 ]
机构
[1] Korea Univ, Coll Med, Dept Physiol, Seoul 02841, South Korea
[2] Korea Univ, Coll Med, Dept Biomed Sci, Seoul, South Korea
[3] Korea Univ, Neurosci Res Inst, Coll Med, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
CRISPR-Cas9; system; genome editing; cleavage efficiency; sgRNA; chromatin state; STRAND BREAK REPAIR; GENOME MODIFICATION; IMMUNE-SYSTEM; CRISPR/CAS9; CAS9; NUCLEASES; TOOL;
D O I
10.1080/19768354.2024.2322054
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The CRISPR-Cas system stands out as a promising genome editing tool due to its cost-effectiveness and time efficiency compared to other methods. This system has tremendous potential for treating various diseases, including genetic disorders and cancer, and promotes therapeutic research for a wide range of genetic diseases. Additionally, the CRISPR-Cas system simplifies the generation of animal models, offering a more accessible alternative to traditional methods. The CRISPR-Cas9 system can be used to cleave target DNA strands that need to be corrected, causing double-strand breaks (DSBs). DNA with DSBs can then be recovered by the DNA repair pathway that the CRISPR-Cas9 system uses to edit target gene sequences. High cleavage efficiency of the CRISPR-Cas9 system is thus imperative for effective gene editing. Herein, we explore several factors affecting the cleavage efficiency of the CRISPR-Cas9 system. These factors include the GC content of the protospacer-adjacent motif (PAM) proximal and distal regions, single-guide RNA (sgRNA) properties, and chromatin state. These considerations contribute to the efficiency of genome editing.
引用
收藏
页码:75 / 83
页数:9
相关论文
共 50 条
  • [31] An improved plant CRISPR-Cas9 system for generating Cas9-free multiplex mutants
    Wang, Jun-Li
    Liang, Luo-Yu
    Lang, Nan
    Li, Yu-Yang
    Guo, Wang
    Cui, Jian
    Zou, Ya-Jie
    Liu, Hai-Qin
    Fei, Qiong-Hui
    Li, Xiao-Feng
    Guo, Guang-Qin
    Wu, Lei
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2021, 35 (01) : 1850 - 1857
  • [32] Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis
    Rousseau, Beth A.
    Hou, Zhonggang
    Gramelspacher, Max J.
    Zhang, Yan
    MOLECULAR CELL, 2018, 69 (05) : 906 - +
  • [33] Efficient and modular CRISPR-Cas9 vector system for Physcomitrella patens
    Mallett, Darren R.
    Chang, Mingqin
    Cheng, Xiaohang
    Bezanilla, Magdalena
    PLANT DIRECT, 2019, 3 (09)
  • [34] gRNA validation for wheat genome editing with the CRISPR-Cas9 system
    Arndell, Taj
    Sharma, Niharika
    Langridge, Peter
    Baumann, Ute
    Watson-Haigh, Nathan S.
    Whitford, Ryan
    BMC BIOTECHNOLOGY, 2019, 19 (01)
  • [35] Applications of the CRISPR-Cas9 system in cancer biology
    Sanchez-Rivera, Francisco J.
    Jacks, Tyler
    NATURE REVIEWS CANCER, 2015, 15 (07) : 387 - 395
  • [36] Energy biotechnology in the CRISPR-Cas9 era
    Estrela, Raissa
    Cate, Jamie Harrison Doudna
    CURRENT OPINION IN BIOTECHNOLOGY, 2016, 38 : 79 - 84
  • [37] Temperature effect on CRISPR-Cas9 mediated genome editing
    Xiang, Guanghai
    Zhang, Xingying
    An, Chenrui
    Cheng, Chen
    Wang, Haoyi
    JOURNAL OF GENETICS AND GENOMICS, 2017, 44 (04) : 199 - 205
  • [38] Application of CRISPR-Cas9 gene editing to treat HBV
    Yan, Kun
    Feng, Jiangpeng
    Xiong, Yong
    Chen, Yu
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (30): : 3142 - 3150
  • [39] Genome editing by CRISPR-Cas9 technology in Petunia hybrida
    Chopy, M.
    Morel, P.
    Bento, S. Rodrigues
    Vandenbussche, M.
    XXVI INTERNATIONAL EUCARPIA SYMPOSIUM SECTION ORNAMENTALS: EDITING NOVELTY, 2020, 1283 : 209 - 217
  • [40] Genome editing in Shiraia bambusicola using CRISPR-Cas9 system
    Deng, Huaxiang
    Gao, Ruijie
    Liao, Xiangru
    Cai, Yujie
    JOURNAL OF BIOTECHNOLOGY, 2017, 259 : 228 - 234