Variational quantum state discriminator for supervised machine learning

被引:2
作者
Lee, Dongkeun [1 ]
Baek, Kyunghyun [2 ]
Huh, Joonsuk [1 ,3 ,4 ]
Park, Daniel K. [5 ,6 ]
机构
[1] Sungkyunkwan Univ, Dept Chem, Suwon 16419, South Korea
[2] Elect & Telecommun Res Inst, Daejeon 34129, South Korea
[3] Sungkyunkwan Univ Adv Inst Nanotechnol, Suwon 16419, South Korea
[4] Sungkyunkwan Univ, Inst Quantum Biophys, Suwon 16419, South Korea
[5] Yonsei Univ, Dept Appl Stat, Seoul 03722, South Korea
[6] Yonsei Univ, Dept Stat & Data Sci, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
quantum state discrimination; quantum machine learning; multi-class classification;
D O I
10.1088/2058-9565/ad0a05
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state discrimination (QSD) is a fundamental task in quantum information processing with numerous applications. We present a variational quantum algorithm that performs the minimum-error QSD, called the variational quantum state discriminator (VQSD). The VQSD uses a parameterized quantum circuit that is trained by minimizing a cost function derived from the QSD, and finds the optimal positive-operator valued measure (POVM) for distinguishing target quantum states. The VQSD is capable of discriminating even unknown states, eliminating the need for expensive quantum state tomography. Our numerical simulations and comparisons with semidefinite programming demonstrate the effectiveness of the VQSD in finding optimal POVMs for minimum-error QSD of both pure and mixed states. In addition, the VQSD can be utilized as a supervised machine learning algorithm for multi-class classification. The area under the receiver operating characteristic curve obtained in numerical simulations with the Iris flower dataset ranges from 0.97 to 1 with an average of 0.985, demonstrating excellent performance of the VQSD classifier.
引用
收藏
页数:14
相关论文
共 68 条
[51]   NEUMARK THEOREM AND QUANTUM INSEPARABILITY [J].
PERES, A .
FOUNDATIONS OF PHYSICS, 1990, 20 (12) :1441-1453
[52]   Quantum Computing in the NISQ era and beyond [J].
Preskill, John .
QUANTUM, 2018, 2
[53]  
Tucci RR, 1999, Arxiv, DOI arXiv:quant-ph/9902062
[54]   Estimating distinguishability measures on quantum computers [J].
Rethinasamy, Soorya ;
Agarwal, Rochisha ;
Sharma, Kunal ;
Wilde, Mark M. .
PHYSICAL REVIEW A, 2023, 108 (01)
[55]   Quantum autoencoders for efficient compression of quantum data [J].
Romero, Jonathan ;
Olson, Jonathan P. ;
Aspuru-Guzik, Alan .
QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (04)
[56]  
Schuld M., 2021, Machine learning with quantum computers, DOI DOI 10.1007/978-3-030-83098-4
[57]   Unsupervised Classification of Quantum Data [J].
Sentis, Gael ;
Monras, Alex ;
Munoz-Tapia, Ramon ;
Calsamiglia, John ;
Bagan, Emilio .
PHYSICAL REVIEW X, 2019, 9 (04)
[58]   A new quantum approach to binary classification [J].
Sergioli, Giuseppe ;
Giuntini, Roberto ;
Freytes, Hector .
PLOS ONE, 2019, 14 (05)
[59]   Trainability of Dissipative Perceptron-Based Quantum Neural Networks [J].
Sharma, Kunal ;
Cerezo, M. ;
Cincio, Lukasz ;
Coles, Patrick J. .
PHYSICAL REVIEW LETTERS, 2022, 128 (18)
[60]   Synthesis of quantum-logic circuits [J].
Shende, Vivek V. ;
Bullock, Stephen S. ;
Markov, Igor L. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2006, 25 (06) :1000-1010