Variational quantum state discriminator for supervised machine learning

被引:2
作者
Lee, Dongkeun [1 ]
Baek, Kyunghyun [2 ]
Huh, Joonsuk [1 ,3 ,4 ]
Park, Daniel K. [5 ,6 ]
机构
[1] Sungkyunkwan Univ, Dept Chem, Suwon 16419, South Korea
[2] Elect & Telecommun Res Inst, Daejeon 34129, South Korea
[3] Sungkyunkwan Univ Adv Inst Nanotechnol, Suwon 16419, South Korea
[4] Sungkyunkwan Univ, Inst Quantum Biophys, Suwon 16419, South Korea
[5] Yonsei Univ, Dept Appl Stat, Seoul 03722, South Korea
[6] Yonsei Univ, Dept Stat & Data Sci, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
quantum state discrimination; quantum machine learning; multi-class classification;
D O I
10.1088/2058-9565/ad0a05
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state discrimination (QSD) is a fundamental task in quantum information processing with numerous applications. We present a variational quantum algorithm that performs the minimum-error QSD, called the variational quantum state discriminator (VQSD). The VQSD uses a parameterized quantum circuit that is trained by minimizing a cost function derived from the QSD, and finds the optimal positive-operator valued measure (POVM) for distinguishing target quantum states. The VQSD is capable of discriminating even unknown states, eliminating the need for expensive quantum state tomography. Our numerical simulations and comparisons with semidefinite programming demonstrate the effectiveness of the VQSD in finding optimal POVMs for minimum-error QSD of both pure and mixed states. In addition, the VQSD can be utilized as a supervised machine learning algorithm for multi-class classification. The area under the receiver operating characteristic curve obtained in numerical simulations with the Iris flower dataset ranges from 0.97 to 1 with an average of 0.985, demonstrating excellent performance of the VQSD classifier.
引用
收藏
页数:14
相关论文
共 68 条
[1]   Minimum-error discrimination between three mirror-symmetric states [J].
Andersson, E ;
Barnett, SM ;
Gilson, CR ;
Hunter, K .
PHYSICAL REVIEW A, 2002, 65 (05) :523081-523084
[2]   Binary search trees for generalized measurements [J].
Andersson, Erika ;
Oi, Daniel K. L. .
PHYSICAL REVIEW A, 2008, 77 (05)
[3]   Configurable sublinear circuits for quantum state preparation [J].
Araujo, Israel F. ;
Park, Daniel K. ;
Ludermir, Teresa B. ;
Oliveira, Wilson R. ;
Petruccione, Francesco ;
da Silva, Adenilton J. .
QUANTUM INFORMATION PROCESSING, 2023, 22 (02)
[4]   A divide-and-conquer algorithm for quantum state preparation [J].
Araujo, Israel F. ;
Park, Daniel K. ;
Petruccione, Francesco ;
da Silva, Adenilton J. .
SCIENTIFIC REPORTS, 2021, 11 (01)
[5]   Quantum state discrimination and its applications [J].
Bae, Joonwoo ;
Kwek, Leong-Chuan .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (08)
[6]   Optimum measurements for discrimination among symmetric quantum states and parameter estimation [J].
Ban, M ;
Kurokawa, K ;
Momose, R ;
Hirota, O .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (06) :1269-1288
[7]   Quantum state discrimination [J].
Barnett, Stephen M. ;
Croke, Sarah .
ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (02) :238-278
[8]   Training deep quantum neural networks [J].
Beer, Kerstin ;
Bondarenko, Dmytro ;
Farrelly, Terry ;
Osborne, Tobias J. ;
Salzmann, Robert ;
Scheiermann, Daniel ;
Wolf, Ramona .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[10]   Quantum circuits with uniformly controlled one-qubit gates -: art. no. 052330 [J].
Bergholm, V ;
Vartiainen, JJ ;
Möttönen, M ;
Salomaa, MM .
PHYSICAL REVIEW A, 2005, 71 (05)