Generalized Surface Green's Functions for an Elastic Half-Space

被引:0
作者
Zemskov, A. V. [1 ,2 ]
Tarlakovskii, D. V. [1 ,2 ]
机构
[1] Natl Res Univ, Moscow Aviat Inst, Moscow 125993, Russia
[2] Lomonosov Moscow State Univ, Res Inst Mech, Moscow 119192, Russia
基金
俄罗斯科学基金会;
关键词
elastic half-space; influence functions; Green's functions; stress functions; generalized functions; point support;
D O I
10.3103/S1066369X23040084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
-Using generalized functions, Green's functions for homogeneous elastic isotropic half-planes and half-spaces are constructed. Airy and Maxwell stress functions are used to find Green's functions. One-dimensional and two-dimensional integral Fourier transforms are used to solve the boundary value problems. Taking into account the properties of generalized functions with a point support, singular components of displacement images are distinguished. It is shown that they correspond to the rigid-body displacement. If there are no singular components, then the stresses and di-splacements coincide with the known classical solutions of the Flamant, Boussinesq, and Cerutti problems.
引用
收藏
页码:22 / 30
页数:9
相关论文
共 28 条
[1]  
Amenzade Yu. A., 1976, THEORY ELASTICITY
[2]  
[Anonymous], 2008, GEN FUNCTIONS
[3]  
Gelfand N., 1958, GEN FUNCTIONS, V3
[4]  
Gelfand N. M., 1958, GEN FUNCTIONS, V1
[5]  
Gelfand N. M., 1958, GEN FUNCTIONS, V2
[6]  
Gelfand N. M., 1961, GEN FUNCTIONS, V4
[7]  
Gorshkov A. G., 2004, WAVES SOLIDS TXB U
[8]  
Gorshkov A. G., 2002, Theory of Elasticity and Plasticity
[9]  
Hahn H.G., 1985, Elastizitatstheorie
[10]  
Johnson K.L., 1992, CONTACT MECH, DOI DOI 10.1017/CBO9781139171731