Toward safer ophthalmic artificial intelligence via distributed validation on real-world data

被引:3
作者
Nath, Siddharth [1 ]
Rahimy, Ehsan [2 ]
Kras, Ashley [3 ,4 ]
Korot, Edward [2 ,4 ,5 ,6 ]
机构
[1] McGill Univ, Dept Ophthalmol & Visual Sci, Montreal, PQ, Canada
[2] Stanford Univ, Byers Eye Inst, Palo Alto, CA USA
[3] Univ Sydney, Save Sight Inst, Sydney, Australia
[4] Moorfields Eye Hosp NHS Fdn Trust, London, England
[5] Retina Specialists Michigan, Grand Rapids, MI USA
[6] 5030 Cascade Rd SE, Grand Rapids, MI 49546 USA
关键词
algorithm validation; artificial intelligence; federated learning;
D O I
10.1097/ICU.0000000000000986
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose of reviewThe current article provides an overview of the present approaches to algorithm validation, which are variable and largely self-determined, as well as solutions to address inadequacies.Recent findingsIn the last decade alone, numerous machine learning applications have been proposed for ophthalmic diagnosis or disease monitoring. Remarkably, of these, less than 15 have received regulatory approval for implementation into clinical practice. Although there exists a vast pool of structured and relatively clean datasets from which to develop and test algorithms in the computational 'laboratory', real-world validation remains key to allow for safe, equitable, and clinically reliable implementation. Bottlenecks in the validation process stem from a striking paucity of regulatory guidance surrounding safety and performance thresholds, lack of oversight on critical postdeployment monitoring and context-specific recalibration, and inherent complexities of heterogeneous disease states and clinical environments. Implementation of secure, third-party, unbiased, pre and postdeployment validation offers the potential to address existing shortfalls in the validation process.Given the criticality of validation to the algorithm pipeline, there is an urgent need for developers, machine learning researchers, and end-user clinicians to devise a consensus approach, allowing for the rapid introduction of safe, equitable, and clinically valid machine learning implementations.
引用
收藏
页码:459 / 463
页数:5
相关论文
共 31 条
[11]  
EyeArt - Eyenuk Inc, 2020, ARTIF INTELL
[12]   A methodology for photometric validation in vehicles visual interactive systems [J].
Faria, A. W. C. ;
Menotti, D. ;
Pappa, G. L. ;
Lara, D. S. D. ;
Araujo, A. de A. .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (04) :4122-4134
[13]   Tackling bias in AI health datasets through the STANDING Together initiative [J].
Ganapathi, Shaswath ;
Palmer, Jo ;
Alderman, Joseph E. ;
Calvert, Melanie ;
Espinoza, Cyrus ;
Gath, Jacqui ;
Ghassemi, Marzyeh ;
Heller, Katherine ;
Mckay, Francis ;
Karthikesalingam, Alan ;
Kuku, Stephanie ;
Mackintosh, Maxine ;
Manohar, Sinduja ;
Mateen, Bilal A. ;
Matin, Rubeta ;
McCradden, Melissa ;
Oakden-Rayner, Lauren ;
Ordish, Johan ;
Pearson, Russell ;
Pfohl, Stephen R. ;
Rostamzadeh, Negar ;
Sapey, Elizabeth ;
Sebire, Neil ;
Sounderajah, Viknesh ;
Summers, Charlotte ;
Treanor, Darren ;
Denniston, Alastair K. ;
Liu, Xiaoxuan .
NATURE MEDICINE, 2022, 28 (11) :2232-2233
[14]   Trustworthy AI: Closing the gap between development and integration of AI systems in ophthalmic practice [J].
Gonzalez-Gonzalo, Cristina ;
Thee, Eric F. ;
Klaver, Caroline C. W. ;
Lee, Aaron Y. ;
Schlingemann, Reinier O. ;
Tufail, Adnan ;
Verbraak, Frank ;
Sanchez, Clara, I .
PROGRESS IN RETINAL AND EYE RESEARCH, 2022, 90
[15]   Health data poverty: an assailable barrier to equitable digital health care [J].
Ibrahim, Hussein ;
Liu, Xiaoxuan ;
Zariffa, Nevine ;
Morris, Andrew D. ;
Denniston, Alastair K. .
LANCET DIGITAL HEALTH, 2021, 3 (04) :E260-E265
[16]  
Ishii-Rousseau JE., 2022, PLOS DIGITAL HLTH, V1, pe0000011
[17]   Assessment of the effect of a comprehensive chest radiograph deep learning model on radiologist reports and patient outcomes: a real-world observational study [J].
Jones, Catherine M. ;
Danaher, Luke ;
Milne, Michael R. ;
Tang, Cyril ;
Seah, Jarrel ;
Oakden-Rayner, Luke ;
Johnson, Andrew ;
Buchlak, Quinlan D. ;
Esmaili, Nazanin .
BMJ OPEN, 2021, 11 (12)
[18]   Highly accurate protein structure prediction with AlphaFold [J].
Jumper, John ;
Evans, Richard ;
Pritzel, Alexander ;
Green, Tim ;
Figurnov, Michael ;
Ronneberger, Olaf ;
Tunyasuvunakool, Kathryn ;
Bates, Russ ;
Zidek, Augustin ;
Potapenko, Anna ;
Bridgland, Alex ;
Meyer, Clemens ;
Kohl, Simon A. A. ;
Ballard, Andrew J. ;
Cowie, Andrew ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Jain, Rishub ;
Adler, Jonas ;
Back, Trevor ;
Petersen, Stig ;
Reiman, David ;
Clancy, Ellen ;
Zielinski, Michal ;
Steinegger, Martin ;
Pacholska, Michalina ;
Berghammer, Tamas ;
Bodenstein, Sebastian ;
Silver, David ;
Vinyals, Oriol ;
Senior, Andrew W. ;
Kavukcuoglu, Koray ;
Kohli, Pushmeet ;
Hassabis, Demis .
NATURE, 2021, 596 (7873) :583-+
[19]   A global review of publicly available datasets for ophthalmological imaging: barriers to access, usability, and generalisability [J].
Khan, Saad M. ;
Liu, Xiaoxuan ;
Nath, Siddharth ;
Korot, Edward ;
Faes, Livia ;
Wagner, Siegfried K. ;
Keane, Pearse A. ;
Sebire, Neil J. ;
Burton, Matthew J. ;
Denniston, Alastair K. .
LANCET DIGITAL HEALTH, 2021, 3 (01) :E51-E66
[20]   Machine Learning Model Drift: Predicting Diagnostic Imaging Follow-Up as a Case Example [J].
Lacson, Ronilda ;
Eskian, Mahsa ;
Licaros, Andro ;
Kapoor, Neena ;
Khorasani, Ramin .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2022, 19 (10) :1162-1169