Toward safer ophthalmic artificial intelligence via distributed validation on real-world data

被引:3
作者
Nath, Siddharth [1 ]
Rahimy, Ehsan [2 ]
Kras, Ashley [3 ,4 ]
Korot, Edward [2 ,4 ,5 ,6 ]
机构
[1] McGill Univ, Dept Ophthalmol & Visual Sci, Montreal, PQ, Canada
[2] Stanford Univ, Byers Eye Inst, Palo Alto, CA USA
[3] Univ Sydney, Save Sight Inst, Sydney, Australia
[4] Moorfields Eye Hosp NHS Fdn Trust, London, England
[5] Retina Specialists Michigan, Grand Rapids, MI USA
[6] 5030 Cascade Rd SE, Grand Rapids, MI 49546 USA
关键词
algorithm validation; artificial intelligence; federated learning;
D O I
10.1097/ICU.0000000000000986
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose of reviewThe current article provides an overview of the present approaches to algorithm validation, which are variable and largely self-determined, as well as solutions to address inadequacies.Recent findingsIn the last decade alone, numerous machine learning applications have been proposed for ophthalmic diagnosis or disease monitoring. Remarkably, of these, less than 15 have received regulatory approval for implementation into clinical practice. Although there exists a vast pool of structured and relatively clean datasets from which to develop and test algorithms in the computational 'laboratory', real-world validation remains key to allow for safe, equitable, and clinically reliable implementation. Bottlenecks in the validation process stem from a striking paucity of regulatory guidance surrounding safety and performance thresholds, lack of oversight on critical postdeployment monitoring and context-specific recalibration, and inherent complexities of heterogeneous disease states and clinical environments. Implementation of secure, third-party, unbiased, pre and postdeployment validation offers the potential to address existing shortfalls in the validation process.Given the criticality of validation to the algorithm pipeline, there is an urgent need for developers, machine learning researchers, and end-user clinicians to devise a consensus approach, allowing for the rapid introduction of safe, equitable, and clinically valid machine learning implementations.
引用
收藏
页码:459 / 463
页数:5
相关论文
共 31 条
[1]  
aao, IRIS REG
[2]   Ascent of machine learning in medicine [J].
不详 .
NATURE MATERIALS, 2019, 18 (05) :407-407
[3]   A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy [J].
Beede, Emma ;
Baylor, Elizabeth ;
Hersch, Fred ;
Iurchenko, Anna ;
Wilcox, Lauren ;
Ruamviboonsuk, Paisan ;
Vardoulakis, Laura M. .
PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), 2020,
[4]  
Brindza LJ., 1980, CLIN MICROBIOL NEWSL, V2, P4
[5]  
Center for Devices Radiological Health, SOFTW MED DEV SAMD
[6]  
Center for Devices Radiological Health, Artificial Intelligence and Machine Learning in Software as a Medical Device
[7]   Federated learning for predicting clinical outcomes in patients with COVID-19 [J].
Dayan, Ittai ;
Roth, Holger R. ;
Zhong, Aoxiao ;
Harouni, Ahmed ;
Gentili, Amilcare ;
Abidin, Anas Z. ;
Liu, Andrew ;
Costa, Anthony Beardsworth ;
Wood, Bradford J. ;
Tsai, Chien-Sung ;
Wang, Chih-Hung ;
Hsu, Chun-Nan ;
Lee, C. K. ;
Ruan, Peiying ;
Xu, Daguang ;
Wu, Dufan ;
Huang, Eddie ;
Kitamura, Felipe Campos ;
Lacey, Griffin ;
de Antonio Corradi, Gustavo Cesar ;
Nino, Gustavo ;
Shin, Hao-Hsin ;
Obinata, Hirofumi ;
Ren, Hui ;
Crane, Jason C. ;
Tetreault, Jesse ;
Guan, Jiahui ;
Garrett, John W. ;
Kaggie, Joshua D. ;
Park, Jung Gil ;
Dreyer, Keith ;
Juluru, Krishna ;
Kersten, Kristopher ;
Rockenbach, Marcio Aloisio Bezerra Cavalcanti ;
Linguraru, Marius George ;
Haider, Masoom A. ;
AbdelMaseeh, Meena ;
Rieke, Nicola ;
Damasceno, Pablo F. ;
Silva, Pedro Mario Cruz E. ;
Wang, Pochuan ;
Xu, Sheng ;
Kawano, Shuichi ;
Sriswasdi, Sira ;
Park, Soo Young ;
Grist, Thomas M. ;
Buch, Varun ;
Jantarabenjakul, Watsamon ;
Wang, Weichung ;
Tak, Won Young .
NATURE MEDICINE, 2021, 27 (10) :1735-+
[8]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[9]  
Digital Diagnostics - AI The Right Way, 2022, DIG DIAGN AI RIGHT W
[10]   Human-computer cooperation platform for developing real-time robotic applications [J].
Dominguez, Carlos ;
Martinez, Juan-Miguel ;
Busquets-Mataix, Jose, V ;
Hassan, Houcine .
JOURNAL OF SUPERCOMPUTING, 2019, 75 (04) :1849-1868