GONALITY OF THE MODULAR CURVE X0(N)

被引:1
作者
Najman, Filip [1 ]
Orlic, Petar [1 ]
机构
[1] Univ Zagreb, Bijenicka Cesta 30, Zagreb 10000, Croatia
关键词
Modular curves; gonality; ELLIPTIC-CURVES; TORSION; POINTS; FIELDS; SPACES;
D O I
10.1090/mcom/3873
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we determine the Q-gonalities of the modular curves X0(N) for all N < 145. We determine the C-gonality of many of these curves and the Q-gonalities and C-gonalities for many larger values of N. Using these results and some further work, we determine all the modular curves X0(N) of gonality 4, 5 and 6 over Q. We also find the first known instances of pentagonal curves X0(N) over C.
引用
收藏
页码:863 / 886
页数:24
相关论文
共 27 条
[1]  
Abramovich D., 1996, INT MATH RES NOT, V20, P1005, DOI [10.1155/S1073792896000621, DOI 10.1155/S1073792896000621]
[2]  
Adzaga N, 2023, Arxiv, DOI arXiv:2303.12566
[3]   Bielliptic modular curves [J].
Bars, F .
JOURNAL OF NUMBER THEORY, 1999, 76 (01) :154-165
[4]   Infinitely many cubic points for X0+(N) over Q [J].
Bars, Francesc ;
Dalal, Tarun .
ACTA ARITHMETICA, 2022, 206 (04) :373-388
[5]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[6]  
COPPENS M, 1991, COMPOS MATH, V78, P193
[7]   Sporadic cubic torsion [J].
Derickx, Maarten ;
Etropolski, Anastassia ;
van Hoeij, Mark ;
Morrow, Jackson S. ;
Zureick-Brown, David .
ALGEBRA & NUMBER THEORY, 2021, 15 (07) :1837-1864
[8]   TORSION SUBGROUPS OF ELLIPTIC CURVES OVER QUINTIC AND SEXTIC NUMBER FIELDS [J].
Derickx, Maarten ;
Sutherland, Andrew V. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (10) :4233-4245
[9]   Gonality of the modular curve X1 (N) [J].
Derickx, Maarten ;
van Hoeij, Mark .
JOURNAL OF ALGEBRA, 2014, 417 :52-71
[10]  
GREEN ML, 1984, J DIFFER GEOM, V19, P125