Inverse Problems for Double-Phase Obstacle Problems with Variable Exponents

被引:6
作者
Zeng, Shengda [1 ,2 ,3 ]
Papageorgiou, Nikolaos S. [4 ]
Winkert, Patrick [5 ]
机构
[1] Yulin Normal Univ, Guangxi Coll, Univ Key Lab Complex Syst Optimizat & Big Data Pro, Yulin 537000, Guangxi, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[3] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[4] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[5] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
基金
欧盟地平线“2020”;
关键词
Anisotropic Musielak-Orlicz Sobolev space; Discontinuous parameter; Variable exponent double-phase operator; Inverse problem; Multivalued convection; Steklov eigenvalue problem; LINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; REGULARITY; CONVECTION; IDENTIFICATION; EIGENVALUES; DEPENDENCE; MINIMIZERS; CALCULUS;
D O I
10.1007/s10957-022-02155-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the present paper, we are concerned with the study of a variable exponent double-phase obstacle problem which involves a nonlinear and nonhomogeneous partial differential operator, a multivalued convection term, a general multivalued boundary condition and an obstacle constraint. Under the framework of anisotropic Musielak-Orlicz Sobolev spaces, we establish the nonemptiness, boundedness and closedness of the solution set of such problems by applying a surjectivity theorem for multivalued pseudomonotone operators and the variational characterization of the first eigenvalue of the Steklov eigenvalue problem for the p-Laplacian. In the second part, we consider a nonlinear inverse problem which is formulated by a regularized optimal control problem to identify the discontinuous parameters for the variable exponent double-phase obstacle problem. We then introduce the parameter-to-solution map, study a continuous result of Kuratowski type and prove the solvability of the inverse problem.
引用
收藏
页码:666 / 699
页数:34
相关论文
共 57 条
[41]   An inverse coefficient problem for a parabolic hemivariational inequality [J].
Migorski, Stanislaw ;
Ochal, Anna .
APPLICABLE ANALYSIS, 2010, 89 (02) :243-256
[42]   Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence [J].
Motreanu, Dumitru ;
Winkert, Patrick .
APPLIED MATHEMATICS LETTERS, 2019, 95 :78-84
[43]  
Panagiotopoulos P. D., 1993, Hemivariational Inequalities, Applications in Mechanics and Engineering
[44]   NONCONVEX PROBLEMS OF SEMIPERMEABLE MEDIA AND RELATED TOPICS [J].
PANAGIOTOPOULOS, PD .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (01) :29-36
[45]  
Papageorgiou N. S., 2018, Applied Nonlinear Functional Analysis. An Introduction
[46]   Solutions for parametric double phase Robin problems [J].
Papageorgiou, Nikolaos S. ;
Vetro, Calogero ;
Vetro, Francesca .
ASYMPTOTIC ANALYSIS, 2021, 121 (02) :159-170
[47]   Positive solutions for nonlinear Neumann problems with singular terms and convection [J].
Papageorgiou, Nikolaos S. ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 136 :1-21
[48]   Existence results for double-phase problems via Morse theory [J].
Perera, Kanishka ;
Squassina, Marco .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (02)
[49]  
Radulescu VD, 2015, MONOGR RES NOTES MAT, P1, DOI 10.1201/b18601
[50]   Regularity for minimizers for functionals of double phase with variable exponents [J].
Ragusa, Maria Alessandra ;
Tachikawa, Atsushi .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :710-728