Inverse Problems for Double-Phase Obstacle Problems with Variable Exponents

被引:4
作者
Zeng, Shengda [1 ,2 ,3 ]
Papageorgiou, Nikolaos S. [4 ]
Winkert, Patrick [5 ]
机构
[1] Yulin Normal Univ, Guangxi Coll, Univ Key Lab Complex Syst Optimizat & Big Data Pro, Yulin 537000, Guangxi, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[3] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[4] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[5] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
基金
欧盟地平线“2020”;
关键词
Anisotropic Musielak-Orlicz Sobolev space; Discontinuous parameter; Variable exponent double-phase operator; Inverse problem; Multivalued convection; Steklov eigenvalue problem; LINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; REGULARITY; CONVECTION; IDENTIFICATION; EIGENVALUES; DEPENDENCE; MINIMIZERS; CALCULUS;
D O I
10.1007/s10957-022-02155-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the present paper, we are concerned with the study of a variable exponent double-phase obstacle problem which involves a nonlinear and nonhomogeneous partial differential operator, a multivalued convection term, a general multivalued boundary condition and an obstacle constraint. Under the framework of anisotropic Musielak-Orlicz Sobolev spaces, we establish the nonemptiness, boundedness and closedness of the solution set of such problems by applying a surjectivity theorem for multivalued pseudomonotone operators and the variational characterization of the first eigenvalue of the Steklov eigenvalue problem for the p-Laplacian. In the second part, we consider a nonlinear inverse problem which is formulated by a regularized optimal control problem to identify the discontinuous parameters for the variable exponent double-phase obstacle problem. We then introduce the parameter-to-solution map, study a continuous result of Kuratowski type and prove the solvability of the inverse problem.
引用
收藏
页码:666 / 699
页数:34
相关论文
共 57 条
  • [1] Double phase problems with variable growth and convection for the Baouendi-Grushin operator
    Bahrouni, Anouar
    Radulescu, Vicentiu D.
    Winkert, Patrick
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06):
  • [2] Regularity for general functionals with double phase
    Baroni, Paolo
    Colombo, Maria
    Mingione, Giuseppe
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
  • [3] Harnack inequalities for double phase functionals
    Baroni, Paolo
    Colombo, Maria
    Mingione, Giuseppe
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 : 206 - 222
  • [4] Symmetry and monotonicity of singular solutions of double phase problems
    Biagi, Stefano
    Esposito, Francesco
    Vecchi, Eugenio
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 280 : 435 - 463
  • [5] REGULARITY RESULTS FOR GENERALIZED DOUBLE PHASE FUNCTIONALS
    Byun, Sun-Sig
    Oh, Jehan
    [J]. ANALYSIS & PDE, 2020, 13 (05): : 1269 - 1300
  • [6] Carl S., 2021, MULTIVALUED VARIATIO
  • [7] Carl S, 2007, SPRINGER MONOGR MATH, P1
  • [8] Contingent derivatives and regularization for noncoercive inverse problems
    Clason, Christian
    Khan, Akhtar A.
    Sama, Miguel
    Tammer, Christiane
    [J]. OPTIMIZATION, 2019, 68 (07) : 1337 - 1364
  • [9] Eigenvalues for double phase variational integrals
    Colasuonno, Francesca
    Squassina, Marco
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) : 1917 - 1959
  • [10] Bounded Minimisers of Double Phase Variational Integrals
    Colombo, Maria
    Mingione, Giuseppe
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) : 219 - 273