In-Sensor Computing: Materials, Devices, and Integration Technologies

被引:155
作者
Wan, Tianqing [1 ]
Shao, Bangjie [1 ]
Ma, Sijie [1 ]
Zhou, Yue [1 ]
Li, Qiao [1 ]
Chai, Yang [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen, Peoples R China
关键词
bioinspired devices; in-sensor computing; near-sensor computing; optoelectronic devices; vision sensors; SUPERLINEAR PHOTOCONDUCTIVITY; SYNAPTIC TRANSISTOR; ATOMICALLY THIN; PHOTONICS; VISION; MEMORY;
D O I
10.1002/adma.202203830
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The number of sensor nodes in the Internet of Things is growing rapidly, leading to a large volume of data generated at sensory terminals. Frequent data transfer between the sensors and computing units causes severe limitations on the system performance in terms of energy efficiency, speed, and security. To efficiently process a substantial amount of sensory data, a novel computation paradigm that can integrate computing functions into sensor networks should be developed. The in-sensor computing paradigm reduces data transfer and also decreases the high computing complexity by processing data locally. Here, the hardware implementation of the in-sensor computing paradigm at the device and array levels is discussed. The physical mechanisms that lead to unique sensory response characteristics and their corresponding computing functions are illustrated. In particular, bioinspired device characteristics enable the implementation of the functionalities of neuromorphic computation. The integration technology is also discussed and the perspective on the future development of in-sensor computing is provided.
引用
收藏
页数:14
相关论文
共 104 条
[31]   AI Edge Devices Using Computing-In-Memory and Processing-In-Sensor: From System to Device [J].
Hsu, Tzu-Hsiang ;
Chiu, Yen-Cheng ;
Wei, Wei-Chen ;
Lo, Yun-Chen ;
Lo, Chung-Chuan ;
Liu, Ren-Shuo ;
Tang, Kea-Tiong ;
Chang, Meng-Fan ;
Hsieh, Chih-Cheng .
2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2019,
[32]  
Hsu TH, 2020, ISSCC DIG TECH PAP I, P110, DOI 10.1109/ISSCC19947.2020.9062926
[33]   All-Optically Controlled Memristor for Optoelectronic Neuromorphic Computing [J].
Hu, Lingxiang ;
Yang, Jing ;
Wang, Jingrui ;
Cheng, Peihong ;
Chua, Leon O. ;
Zhuge, Fei .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (04)
[34]  
Hu ZY, 2016, NAT NANOTECHNOL, V11, P559, DOI [10.1038/NNANO.2016.1, 10.1038/nnano.2016.1]
[35]   In-memory computing with resistive switching devices [J].
Ielmini, Daniele ;
Wong, H. -S. Philip .
NATURE ELECTRONICS, 2018, 1 (06) :333-343
[36]   A bioinspired flexible organic artificial afferent nerve [J].
Kim, Yeongin ;
Chortos, Alex ;
Xu, Wentao ;
Liu, Yuxin ;
Oh, Jin Young ;
Son, Donghee ;
Kang, Jiheong ;
Foudeh, Amir M. ;
Zhu, Chenxin ;
Lee, Yeongjun ;
Niu, Simiao ;
Liu, Jia ;
Pfattner, Raphael ;
Bao, Zhenan ;
Lee, Tae-Woo .
SCIENCE, 2018, 360 (6392) :998-+
[37]   Superlinear Composition-Dependent Photocurrent in CVD-Grown Monolayer MoS2(1-x)Se2x Alloy Devices [J].
Klee, Velveth ;
Preciado, Edwin ;
Barroso, David ;
Nguyen, Ariana E. ;
Lee, Chris ;
Erickson, Kristopher J. ;
Triplett, Mark ;
Davis, Brandon ;
Lu, I-Hsi ;
Bobek, Sarah ;
McKinley, Jessica ;
Martinez, Joseph P. ;
Mann, John ;
Talin, A. Alec ;
Bartels, Ludwig ;
Leonard, Francois .
NANO LETTERS, 2015, 15 (04) :2612-2619
[38]   A Highly Transparent Artificial Photonic Nociceptor [J].
Kumar, Mohit ;
Kim, Hong-Sik ;
Kim, Joondong .
ADVANCED MATERIALS, 2019, 31 (19)
[39]   ARTIFICIAL RETINAS - FAST, VERSATILE IMAGE-PROCESSORS [J].
KYUMA, K ;
LANGE, E ;
OHTA, J ;
HERMANNS, A ;
BANISH, B ;
OITA, M .
NATURE, 1994, 372 (6502) :197-198
[40]   Mixed-precision in-memory computing [J].
Le Gallo, Manuel ;
Sebastian, Abu ;
Mathis, Roland ;
Manica, Matteo ;
Giefers, Heiner ;
Tuma, Tomas ;
Bekas, Costas ;
Curioni, Alessandro ;
Eleftheriou, Evangelos .
NATURE ELECTRONICS, 2018, 1 (04) :246-253