Machine learning to predict untreated dental caries in adolescents

被引:1
作者
Bomfim, Rafael Aiello [1 ]
机构
[1] Univ Fed Mato Grosso do Sul, Sch Dent, Campo Grande, Brazil
关键词
Dental caries; Adolescents; Machine learning; Primary health care contribution statement;
D O I
10.1186/s12903-024-04073-4
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
ObjectiveThis study aimed to predict adolescents with untreated dental caries through a machine-learning approach using three different algorithmsMethodsData came from an epidemiological survey in the five largest cities in Mato Grosso do Sul, Brazil. Data on sociodemographic characteristics, consumption of unhealthy foods and behaviours (use of dental floss and toothbrushing) were collected using Sisson's theoretical model, in 615 adolescents. For the machine learning, three different algorithms were used: (1) XGboost; (2) decision tree and (3) logistic regression. The epidemiological baseline was used to train and test predictions to detect individuals with untreated dental caries, through eight main predictor variables. Analyzes were performed using the R software (R Foundation for Statistical Computing, Vienna, Austria). The Ethics Committee approved the study..ResultsFor the 615 adolescents, xgboost performed better with an area under the curve (AUC) of 84% versus 81% for the decision tree algorithm. The most important variables were the use of dental floss, unhealthy food consumption, self-declared race and exposure to fluoridated water.ConclusionsFamily health teams can improve the work process and use artificial intelligence mechanisms to predict adolescents with untreated dental caries, and, in this way, schedule dental appointments for the treatment of adolescents earlier.
引用
收藏
页数:6
相关论文
共 28 条
  • [1] The impact of dental caries and trauma in children on family quality of life
    Abanto, Jenny
    Paiva, Saul Martins
    Raggio, Daniela Procida
    Celiberti, Paula
    Aldrigui, Janaina Merli
    Boenecker, Marcelo
    [J]. COMMUNITY DENTISTRY AND ORAL EPIDEMIOLOGY, 2012, 40 (04) : 323 - 331
  • [2] Global, Regional, and National Levels and Trends in Burden of Oral Conditions from 1990 to 2017: A Systematic Analysis for the Global Burden of Disease 2017 Study
    Bernabe, E.
    Marcenes, W.
    Hernandez, C. R.
    Bailey, J.
    Abreu, L. G.
    Alipour, V
    Amini, S.
    Arabloo, J.
    Arefi, Z.
    Arora, A.
    Ayanore, M. A.
    Baernighausen, T. W.
    Chan, T. H.
    Bijani, A.
    Cho, D. Y.
    Chu, D. T.
    Crowe, C. S.
    Demoz, G. T.
    Demsie, D. G.
    Forooshani, Z. S. Dibaji
    Du, M.
    El Tantawi, M.
    Fischer, F.
    Folayan, M. O.
    Futran, N. D.
    Geramo, Y. C. D.
    Haj-Mirzaian, A.
    Hariyani, N.
    Hasanzadeh, A.
    Hassanipour, S.
    Hay, S., I
    Hole, M. K.
    Hostiuc, S.
    Ilic, M. D.
    James, S. L.
    Kalhor, R.
    Kemmer, L.
    Keramati, M.
    Khader, Y. S.
    Kisa, S.
    Kisa, A.
    Koyanagi, A.
    Lalloo, R.
    Le Nguyen, Q.
    London, S. D.
    Manohar, N. D.
    Massenburg, B. B.
    Mathur, M. R.
    Meles, H. G.
    Mestrovic, T.
    [J]. JOURNAL OF DENTAL RESEARCH, 2020, 99 (04) : 362 - 373
  • [3] Last dental visit and severity of tooth loss: a machine learning approach
    Bomfim, Rafael Aiello
    [J]. BMC RESEARCH NOTES, 2023, 16 (01)
  • [4] Bomfim Rafael Aiello, 2020, Rev Bras Epidemiol, V23, pe200100, DOI 10.1590/1980-549720200100
  • [5] Sedentary behavior, unhealthy food consumption and dental caries in 12-year-old schoolchildren: a population-based study
    Bomfim, Rafael Aiello
    Frias, Antonio Carlos
    Cascaes, Andreia Morales
    Nigro Mazzilli, Luiz Eugenio
    de Souza, Luciana Bronzi
    de Almeida Carrer, Fernanda Campos
    de Araujo, Maria Ercilia
    [J]. BRAZILIAN ORAL RESEARCH, 2021, 35
  • [6] Brazilian Institute of Geography and Statistics (IBGE), about us
  • [7] Mid-point for open-ended income category and the effect of equivalence scales on the income-health relationship
    Celeste, Roger Keller
    Bastos, Joao Luiz
    [J]. REVISTA DE SAUDE PUBLICA, 2013, 47 : 168 - 171
  • [8] Importance of socioeconomic factors in predicting tooth loss among older adults in Japan: Evidence from a machine learning analysis
    Cooray, Upul
    Watt, Richard G.
    Tsakos, Georgios
    Heilmann, Anja
    Hariyama, Masanori
    Yamamoto, Takafumi
    Kuruppuarachchige, Isuruni
    Kondo, Katsunori
    Osaka, Ken
    Aida, Jun
    [J]. SOCIAL SCIENCE & MEDICINE, 2021, 291
  • [9] Factors associated with the absence of Brazilians in specialized dental centers
    da Cunha, Inara Pereira
    de Lacerda, Valeria Rodrigues
    da Silveira Gaspar, Gabriela
    de Lucena, Edson Hilan Gomes
    Mialhe, Fabio Luiz
    de Goes, Paulo Savio Angeiras
    Leite, Hazelelponi Quera Naumann Cerqueira
    Bomfim, Rafael Aiello
    [J]. BMC ORAL HEALTH, 2022, 22 (01)
  • [10] Factors associated with last dental visit or not to visit the dentist by Brazilian adolescents: A population-based study
    da Fonseca, Emilio P.
    Frias, Antonio C.
    Mialhe, Fabio L.
    Pereira, Antonio C.
    Meneghim, Marcelo de C.
    [J]. PLOS ONE, 2017, 12 (08):