3D Non-separable Moment Invariants

被引:1
作者
Flusser, Jan [1 ]
Suk, Tomas [1 ]
Bedratyuk, Leonid [2 ]
Karella, Tomas [1 ]
机构
[1] Czech Acad Sci, Inst Informat Theory & Automat, Vodrenskou Vezi 4, Prague 18208 8, Czech Republic
[2] Khmelnytsky Natl Univ, Instytutska 11, UA-29016 Khmelnytsky, Ukraine
来源
COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2023, PT I | 2023年 / 14184卷
关键词
3D recognition; 3D rotation invariants; non-separable moments; Appell polynomials; ROTATION;
D O I
10.1007/978-3-031-44237-7_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce new 3D rotation moment invariants, which are composed of non-separable Appell moments. The Appell moments can be substituted directly into the 3D rotation invariants instead of the geometric moments without violating their invariance. We show that non-separable moments may outperform the separable ones in terms of recognition power and robustness thanks to a better distribution of their zero surfaces over the image space. We test the numerical properties and discrimination power of the proposed invariants on three real datasets - MRI images of human brain, 3D scans of statues, and confocal microscope images of worms.
引用
收藏
页码:295 / 305
页数:11
相关论文
共 24 条
[11]  
Koschutnig K., 2021, Openneuro
[12]  
Long F., 2022, 3D Nuclei instance segmentation dataset of fluorescence microscopy volumes of C. elegans
[13]  
Long FH, 2009, NAT METHODS, V6, P667, DOI [10.1038/NMETH.1366, 10.1038/nmeth.1366]
[14]   Voxel Transformer for 3D Object Detection [J].
Mao, Jiageng ;
Xue, Yujing ;
Niu, Minzhe ;
Bai, Haoyue ;
Feng, Jiashi ;
Liang, Xiaodan ;
Xu, Hang ;
Xu, Chunjing .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :3144-3153
[15]  
Maturana D, 2015, IEEE INT C INT ROBOT, P922, DOI 10.1109/IROS.2015.7353481
[16]   CNN Architectures for Geometric Transformation-Invariant Feature Representation in Computer Vision: A Review [J].
Mumuni A. ;
Mumuni F. .
SN Computer Science, 2021, 2 (5)
[17]   SurfNet: Generating 3D shape surfaces using deep residual networks [J].
Sinha, Ayan ;
Unmesh, Asim ;
Huang, Qixing ;
Ramani, Karthik .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :791-800
[18]   3D rotation invariants by complex moments [J].
Suk, Tomas ;
Flusser, Jan ;
Boldys, Jiri .
PATTERN RECOGNITION, 2015, 48 (11) :3516-3526
[19]  
Suk T, 2011, LECT NOTES COMPUT SC, V6855, P212, DOI 10.1007/978-3-642-23678-5_24
[20]  
Wu H, 2022, Arxiv, DOI arXiv:2211.11962