3D Non-separable Moment Invariants

被引:1
作者
Flusser, Jan [1 ]
Suk, Tomas [1 ]
Bedratyuk, Leonid [2 ]
Karella, Tomas [1 ]
机构
[1] Czech Acad Sci, Inst Informat Theory & Automat, Vodrenskou Vezi 4, Prague 18208 8, Czech Republic
[2] Khmelnytsky Natl Univ, Instytutska 11, UA-29016 Khmelnytsky, Ukraine
来源
COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2023, PT I | 2023年 / 14184卷
关键词
3D recognition; 3D rotation invariants; non-separable moments; Appell polynomials; ROTATION;
D O I
10.1007/978-3-031-44237-7_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce new 3D rotation moment invariants, which are composed of non-separable Appell moments. The Appell moments can be substituted directly into the 3D rotation invariants instead of the geometric moments without violating their invariance. We show that non-separable moments may outperform the separable ones in terms of recognition power and robustness thanks to a better distribution of their zero surfaces over the image space. We test the numerical properties and discrimination power of the proposed invariants on three real datasets - MRI images of human brain, 3D scans of statues, and confocal microscope images of worms.
引用
收藏
页码:295 / 305
页数:11
相关论文
共 24 条
[1]  
Bedratyuk L.P., 2023, Matematychni Studii, V58, P115, DOI [10.30970/ms.58.2.115-132, DOI 10.30970/MS.58.2.115-132]
[2]   Non-separable rotation moment invariants [J].
Bedratyuk, Leonid ;
Flusser, Jan ;
Suk, Tomas ;
Kostkova, Jitka ;
Kautsky, Jaroslav .
PATTERN RECOGNITION, 2022, 127
[3]   2D Geometric Moment Invariants from the Point of View of the Classical Invariant Theory [J].
Bedratyuk, Leonid .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2020, 62 (08) :1062-1075
[4]  
Brock A, 2016, Arxiv, DOI [arXiv:1608.04236, 10.48550/arXiv.1608.04236]
[5]  
Canterakis N., 1999, PROC 11 SCANDINAVIAN, P85
[6]  
DIP, 2011, 3D rotation moment invariants
[7]  
Dunkl C. F., 2014, ENCY MATH ITS APPL, V155
[8]  
Flusser J., 2016, 2D and 3D Image Analysis by Moments, P1
[9]   Vision meets robotics: The KITTI dataset [J].
Geiger, A. ;
Lenz, P. ;
Stiller, C. ;
Urtasun, R. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1231-1237
[10]   UNETR: Transformers for 3D Medical Image Segmentation [J].
Hatamizadeh, Ali ;
Tang, Yucheng ;
Nath, Vishwesh ;
Yang, Dong ;
Myronenko, Andriy ;
Landman, Bennett ;
Roth, Holger R. ;
Xu, Daguang .
2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, :1748-1758