The Willmore flow with prescribed isoperimetric ratio

被引:2
|
作者
Rupp, Fabian [1 ,2 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Willmore flow; Helfrich energy; isoperimetric ratio; Lojasiewicz-Simon inequality; non-local geometric evolution equation; GRADIENT FLOW; FINITE-TIME; SINGULARITIES; THEOREM; ENERGY;
D O I
10.1080/03605302.2024.2302377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a non-local L-2-gradient flow for the Willmore energy of immersed surfaces which preserves the isoperimetric ratio. For spherical initial data with energy below an explicit threshold, we show long-time existence and convergence to a Helfrich immersion. This is in sharp contrast to the locally constrained flow, where finite time singularities occur.
引用
收藏
页码:148 / 184
页数:37
相关论文
共 50 条
  • [21] A nested variational time discretization for parametric Willmore flow
    Balzani, Nadine
    Rumpf, Martin
    INTERFACES AND FREE BOUNDARIES, 2012, 14 (04) : 431 - 454
  • [22] An unconditionally stable threshold dynamics method for the Willmore flow
    Shengqing Hu
    Zijie Lin
    Dong Wang
    Xiao-Ping Wang
    Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 1519 - 1546
  • [23] The Area Preserving Willmore Flow and Local Maximizers of the Hawking Mass in Asymptotically Schwarzschild Manifolds
    Koerber, Thomas
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (04) : 3455 - 3497
  • [24] Computational p-Willmore Flow with Conformal Penalty
    Gruber, Anthony
    Aulisa, Eugenio
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (05):
  • [25] An unconditionally stable threshold dynamics method for the Willmore flow
    Hu, Shengqing
    Lin, Zijie
    Wang, Dong
    Wang, Xiao-Ping
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (03) : 1519 - 1546
  • [26] NEW ADVANCES IN THE STUDY OF GENERALIZED WILLMORE SURFACES AND FLOW
    Athukorallage, Bhagya
    Aulisa, Eugenio
    Bornia, Giorgio
    Paragoda, Thanuja
    Toda, Magdalena
    PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2016, : 133 - 142
  • [27] A new diffuse-interface approximation of the Willmore flow
    Raetz, Andreas
    Roeger, Matthias
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [28] The Willmore flow of Hopf-tori in the 3-sphere
    Ruben Jakob
    Journal of Evolution Equations, 2023, 23
  • [29] A phase-field approximation of the Willmore flow with volume constraint
    Colli, Pierluigi
    Laurencot, Philippe
    INTERFACES AND FREE BOUNDARIES, 2011, 13 (03) : 341 - 351
  • [30] Error analysis of a finite element method for the Willmore flow of graphs
    Deckelnick, K
    Dziuk, G
    INTERFACES AND FREE BOUNDARIES, 2006, 8 (01) : 21 - 46