共 4 条
Ultrasonic-assisted chemical modification of a natural clinoptilolite zeolite: Enhanced ammonium adsorption rate and resistance to disturbing ions
被引:15
|作者:
Jahani, Farahnaz
[1
]
Sadeghi, Rahmat
[1
]
Shakeri, Mozaffar
[2
]
机构:
[1] Univ Kurdistan, Dept Chem, Sanandaj, Iran
[2] Chem & Chem Engn Res Ctr Iran, Lab Heterogeneous Catalysis, POB 14977-16363, Tehran, Iran
来源:
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING
|
2023年
/
11卷
/
05期
关键词:
Zeolite;
Ammonium;
Physicochemical modification;
Ultrasonic;
Thermodynamic;
AQUEOUS-SOLUTION;
PHYSICOCHEMICAL PROPERTIES;
LANDFILL LEACHATE;
FLY-ASH;
REMOVAL;
WATER;
EXCHANGE;
NITROGEN;
DEALUMINATION;
RETENTION;
D O I:
10.1016/j.jece.2023.110354
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
A natural clinoptilolite zeolite was modified by ultrasonic-assisted chemicals (NaOH, FeCl3 and HCl) to improve their performance in ammonium removal from (waste) water. The obtained modified zeolites were characterized by Field Scanning Electron Microscope (FESEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD) and gas sorption techniques to understand the relation between physiochemical factors of the modified zeolites and ammonium adsorption. The highest elimination efficiency of ammonium by the natural zeolite modified by ultrasonic-assisted HCl treatment, HZU2, was >= 99%. However, ammonium removal by the raw natural zeolite was only 51.66%. The efficiencies of ammonium removal in the presence of various disturbing anions and cations by the HZU2 and raw zeolite were in the range of 79-93% and 15-30%, respectively. The HZU2 was reused five times presenting stable adsorption removal of ammonium. The theoretical calculations were performed to identify the key kinetics and thermodynamics parameters controlling the adsorption rate. The maximum adsorption capacity (qmax) of HZU2 obtained by the Langmuir model was about 142.85 (mg-ammonium/g-adsorbent) suggesting that the adsorption capacity of a monolayer and the relative content of alkali metal cations are suitable for the improvement of ammonium ion adsorption. The obtained thermodynamics parameters showed that the ammonium adsorption is a spontaneous and exothermic physisorption process. Consequently, we showed that ultrasonic-assisted chemical modification is a promising approach to control both textural properties and chemical composition of natural zeolites to enhance the ammonium removal from wastewater.
引用
收藏
页数:12
相关论文