Identification of Streptococcus pneumoniae genes associated with hypothiocyanous acid tolerance through genome-wide screening

被引:4
作者
Shearer, Heather L. [1 ,2 ]
Pace, Paul E. [1 ]
Smith, Leah M. [3 ,4 ]
Fineran, Peter C. [2 ,3 ,4 ,5 ]
Matthews, Allison J. [6 ]
Camilli, Andrew [6 ]
Dickerhof, Nina [1 ,2 ]
Hampton, Mark B. [1 ,2 ]
机构
[1] Univ Otago Christchurch, Matai Haora Ctr Redox Biol & Med, Dept Pathol & Biomed Sci, Christchurch, New Zealand
[2] Univ Otago, Maurice Wilkins Ctr Mol Biodiscovery, Dunedin, New Zealand
[3] Univ Otago, Dept Microbiol & Immunol, Otago, New Zealand
[4] Univ Otago, Genet Otago, Otago, New Zealand
[5] Univ Otago, Bioprotect Aotearoa, Dunedin, New Zealand
[6] Tufts Univ, Sch Med, Dept Mol Biol & Microbiol, Boston, MA USA
关键词
Tn-seq; oxidative stress; lactoperoxidase; pneumonia; myeloperoxidase; HYDROGEN-PEROXIDE PRODUCTION; PYRUVATE OXIDASE; BACTERIAL PHOSPHOENOLPYRUVATE; ALKYLHYDROPEROXIDASE-D; HEAT-SHOCK; ENZYME-I; VIRULENCE; PROTEIN; EXPRESSION; SYSTEM;
D O I
10.1128/jb.00208-23
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Streptococcus pneumoniae is a commensal bacterium and invasive pathogen that causes millions of deaths worldwide. The pneumococcal vaccine offers limited protection, and the rise of antimicrobial resistance will make treatment increasingly challenging, emphasizing the need for new antipneumococcal strategies. One possibility is to target antioxidant defenses to render S. pneumoniae more susceptible to oxidants produced by the immune system. Human peroxidase enzymes will convert bacterial-derived hydrogen peroxide to hypothiocyanous acid (HOSCN) at sites of colonization and infection. Here, we used saturation transposon mutagenesis and deep sequencing to identify genes that enable S. pneumoniae to tolerate HOSCN. We identified 37 genes associated with S. pneumoniae HOSCN tolerance, including genes involved in metabolism, membrane transport, DNA repair, and oxidant detoxification. Single-gene deletion mutants of the identified antioxidant defense genes sodA, spxB, trxA, and ahpD were generated and their ability to survive HOSCN was assessed. With the exception of Delta ahpD, all deletion mutants showed significantly greater sensitivity to HOSCN, validating the result of the genome-wide screen. The activity of hypothiocyanous acid reductase or glutathione reductase, known to be important for S. pneumoniae tolerance of HOSCN, was increased in three of the mutants, highlighting the compensatory potential of antioxidant systems. Double deletion of the gene encoding glutathione reductase and sodA sensitized the bacteria significantly more than single deletion. The HOSCN defense systems identified in this study may be viable targets for novel therapeutics against this deadly pathogen.
引用
收藏
页数:18
相关论文
共 75 条
  • [1] Auranofin efficacy against MDR Streptococcus pneumoniae and Staphylococcus aureus infections
    Aguinagalde, Leire
    Diez-Martinez, Roberto
    Yuste, Jose
    Royo, Inmaculada
    Gil, Carmen
    Lasa, Inigo
    Martin-Fontecha, Mar
    Marin-Ramos, Nagore Isabel
    Ardanuy, Carmen
    Linares, Josefina
    Garcia, Pedro
    Garcia, Ernesto
    Sanchez-Puelles, Jose M.
    [J]. JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2015, 70 (09) : 2608 - 2617
  • [2] Arner E.S.J., 2022, Redox Chemistry and Biology of Thiols, P197, DOI [10.1016/B978-0-323-90219-9.00009-1, DOI 10.1016/B978-0-323-90219-9.00009-1]
  • [3] ACCUMULATION OF HYPOTHIOCYANITE ION DURING PEROXIDASE-CATALYZED OXIDATION OF THIOCYANATE ION
    AUNE, TM
    THOMAS, EL
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1977, 80 (01): : 209 - 214
  • [4] Cyclic Di-AMP Impairs Potassium Uptake Mediated by a Cyclic Di-AMP Binding Protein in Streptococcus pneumoniae
    Bai, Yinlan
    Yang, Jun
    Zarrella, Tiffany M.
    Zhang, Yang
    Metzger, Dennis W.
    Bai, Guangchun
    [J]. JOURNAL OF BACTERIOLOGY, 2014, 196 (03) : 614 - 623
  • [5] The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries
    Barquist, Lars
    Mayho, Matthew
    Cummins, Carla
    Cain, Amy K.
    Boinett, Christine J.
    Page, Andrew J.
    Langridge, Gemma C.
    Quail, Michael A.
    Keane, Jacqueline A.
    Parkhill, Julian
    [J]. BIOINFORMATICS, 2016, 32 (07) : 1109 - 1111
  • [6] BEERS RF, 1952, J BIOL CHEM, V195, P133
  • [7] A Functional Genomics Approach to Establish the Complement of Carbohydrate Transporters in Streptococcus pneumoniae
    Bidossi, Alessandro
    Mulas, Laura
    Decorosi, Francesca
    Colomba, Leonarda
    Ricci, Susanna
    Pozzi, Gianni
    Deutscher, Josef
    Viti, Carlo
    Oggioni, Marco Rinaldo
    [J]. PLOS ONE, 2012, 7 (03):
  • [8] Streptococcus pneumoniae colonisation:: the key to pneumococcal disease
    Bogaert, D
    de Groot, R
    Hermans, PWM
    [J]. LANCET INFECTIOUS DISEASES, 2004, 4 (03) : 144 - 154
  • [9] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • [10] CARLSSON J, 1984, FEMS MICROBIOL LETT, V25, P53, DOI 10.1016/0378-1097(84)90045-4