Dictionary Learning (DL)-based Sparse Cascaded Channel Estimation in IRS-assisted Terahertz MU-SIMO Systems With Hardware Impairments

被引:0
作者
Maity, Priyanka [1 ]
Khatri, Sunaina [2 ]
Srivastava, Suraj [1 ]
Jagannatham, Aditya K. [1 ]
机构
[1] Indian Inst Technol Kanpur, Kanpur, Uttar Pradesh, India
[2] Qualcomm Bangalore, Bangalore, Karnataka, India
来源
2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP | 2023年
关键词
THz channel estimation; IRS; dictionary learning; sparse recovery; hardware impairments; INTELLIGENT REFLECTING SURFACE;
D O I
10.1109/SSP53291.2023.10207987
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work conceives a sparse channel estimation (CE) scheme for multi-user (MU) intelligent reflecting surface (IRS)-aided Terahertz (THz) systems. The proposed framework also incorporates hardware impairments that arise due to manufacturing errors in practical THz systems, such as mutual coupling, irregular antenna spacing, and antenna gain/phase errors. A dictionary learning (DL) algorithm is proposed to learn the best sparsifying dictionary for an IRS-aided THz system in the presence of hardware impairments. The dictionary thus obtained is subsequently employed to leverage the sparsity inherent in the IRS-aided cascaded THz system toward channel estimation (CE). Simulation results corroborate our analytical findings and demonstrate the improved performance with respect to an agnostic scheme that ignores the non-idealities.
引用
收藏
页码:606 / 610
页数:5
相关论文
共 17 条
  • [1] K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    Aharon, Michal
    Elad, Michael
    Bruckstein, Alfred
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4311 - 4322
  • [2] Intelligent Reflecting Surface: A Programmable Wireless Environment for Physical Layer Security
    Chen, Jie
    Liang, Ying-Chang
    Pei, Yiyang
    Guo, Huayan
    [J]. IEEE ACCESS, 2019, 7 : 82599 - 82612
  • [3] Engan K, 1999, INT CONF ACOUST SPEE, P2443, DOI 10.1109/ICASSP.1999.760624
  • [4] He HT, 2021, Arxiv, DOI arXiv:2006.16628
  • [5] Cascaded Channel Estimation for Large Intelligent Metasurface Assisted Massive MIMO
    He, Zhen-Qing
    Yuan, Xiaojun
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (02) : 210 - 214
  • [6] Channel Modeling and Capacity Analysis for Electromagnetic Wireless Nanonetworks in the Terahertz Band
    Jornet, Josep Miquel
    Akyildiz, Ian F.
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2011, 10 (10) : 3211 - 3221
  • [7] Mairal J., 2009, PROC 26 ANN INT C MA, P689, DOI DOI 10.1145/1553374.1553463
  • [8] Mishra D, 2019, INT CONF ACOUST SPEE, P4659, DOI 10.1109/ICASSP.2019.8683663
  • [9] Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond
    Rappaport, Theodore S.
    Xing, Yunchou
    Kanhere, Ojas
    Ju, Shihao
    Madanayake, Arjuna
    Mandal, Soumyajit
    Alkhateeb, Ahmed
    Trichopoulos, Georgios C.
    [J]. IEEE ACCESS, 2019, 7 : 78729 - 78757
  • [10] Double Sparsity: Learning Sparse Dictionaries for Sparse Signal Approximation
    Rubinstein, Ron
    Zibulevsky, Michael
    Elad, Michael
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1553 - 1564