Multiple-Relaxation Runge Kutta Methods for Conservative Dynamical Systems

被引:8
作者
Biswas, Abhijit [1 ]
Ketcheson, David I. I. [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div, Thuwal 23955, Saudi Arabia
关键词
Runge-Kutta methods; Multiple-relaxation RK methods; Conservative systems; Invariants-preserving numerical methods; NUMERICAL-INTEGRATION; INVARIANTS; STABILITY; SCHEMES;
D O I
10.1007/s10915-023-02312-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the idea of relaxation time stepping methods in order to preserve multiple nonlinear conserved quantities of a dynamical system by projecting along directions defined by multiple time stepping algorithms. Similar to the directional projection method of Calvo et. al. we use embedded Runge-Kutta methods to facilitate this in a computationally efficient manner. Proof of the accuracy of the modified RK methods and the existence of valid relaxation parameters are given, under some restrictions. Among other examples, we apply this technique to Implicit-Explicit Runge-Kutta time integration for the Korteweg-de Vries equation and investigate the feasibility and effect of conserving multiple invariants for multi-soliton solutions.
引用
收藏
页数:26
相关论文
共 26 条
[1]  
[Anonymous], 1900, Z. Math. Phys
[3]  
Biswas A., 2023, Code for multiple-relaxation Runge-Kutta methods for conservative dynamical systems
[4]   On the preservation of invariants by explicit Runge-Kutta methods [J].
Calvo, M. ;
Hernandez-Abreu, D. ;
Montijano, J. I. ;
Randez, L. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03) :868-885
[5]   Error growth in the numerical integration of periodic orbits [J].
Calvo, M. ;
Laburta, M. P. ;
Montijano, J. I. ;
Randez, L. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (12) :2646-2661
[6]   THE DEVELOPMENT OF VARIABLE-STEP SYMPLECTIC INTEGRATORS, WITH APPLICATION TO THE 2-BODY PROBLEM [J].
CALVO, MP ;
SANZSERNA, JM .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (04) :936-952
[7]   Error growth in the numerical integration of periodic orbits, with application to Hamiltonian and reversible systems [J].
Cano, B ;
SanzSerna, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (04) :1391-1417
[8]   STABILITY OF RUNGE-KUTTA METHODS FOR TRAJECTORY PROBLEMS [J].
COOPER, GJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (01) :1-13
[9]   Accuracy and conservation properties in numerical integration: The case of the Korteweg de Vries equation [J].
deFrutos, J ;
SanzSerna, JM .
NUMERISCHE MATHEMATIK, 1997, 75 (04) :421-445
[10]  
Dekker K., 1984, Stability of Runge-Kutta methods for stiff nonlinear differential equations