Values of the length function for nonassociative algebras

被引:0
作者
Guterman, Alexander [1 ,2 ,3 ]
Kudryavtsev, Dmitry [4 ,5 ]
机构
[1] Bar Ilan Univ, Dept Math, Ramat Gan, Israel
[2] Lomonosov Moscow State Univ, Fac Algebra, Dept Mech & Math, Moscow, Russia
[3] Moscow Ctr Fundamental & Appl Math, Moscow, Russia
[4] Univ Manchester, Sch Math, Manchester, England
[5] Univ Manchester, Sch Math, Manchester M13 9PL, England
关键词
Length function; nonassociative algebra; PAIRS;
D O I
10.1080/00927872.2023.2241533
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study realizable values of the length function for unital possibly nonassociative algebras of a given dimension. To do this we apply the method of characteristic sequences and establish sufficient conditions of realizability for a given value of length. The proposed conditions are based on binary decompositions of the value and algebraic constructions that allow to modify length function of an algebra. Additionally we provide a description of unital algebras of maximal possible length in terms of their bases.
引用
收藏
页码:392 / 407
页数:16
相关论文
共 20 条
[11]   ON THE LENGTHS OF IRREDUCIBLE PAIRS OF COMPLEX MATRICES [J].
Longstaff, W. E. ;
Rosenthal, Peter .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (11) :3769-3777
[12]  
Markova O., 2012, J MATH SCI-U TOKYO, V193, P687, DOI DOI 10.1007/S10958-013-1495-2
[13]   Algebras of length one [J].
Markova, O., V ;
Martinez, C. ;
Rodrigues, R. L. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (07)
[14]  
Markova O. V., 2012, J MATH SCI-U TOKYO, V185, P458
[15]  
Markova O. V., 2022, ZAPISKI NAUCHNYKH SE, V514, P126
[16]  
Markova O.V., 2022, J MATH SCI-U TOKYO, V262, P99
[17]   An upper bound for the length of a finite-dimensional algebra [J].
Pappacena, CJ .
JOURNAL OF ALGEBRA, 1997, 197 (02) :535-545
[18]  
Paz A., 1984, LINEAR MULTILINEAR A, V15, P161, DOI [DOI 10.1080/03081088408817585, 10.1080/03081088408817585]
[19]  
SPENCER AJM, 1960, ARCH RATION MECH AN, V4, P214
[20]   THE THEORY OF MATRIX POLYNOMIALS AND ITS APPLICATION TO THE MECHANICS OF ISOTROPIC CONTINUA [J].
SPENCER, AJM ;
RIVLIN, RS .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1959, 2 (04) :309-337