Extremality of bounds for numerical radii of Foguel operators

被引:0
作者
Gau, Hwa-Long [1 ]
Li, Chi-Kwong [2 ]
Wang, Kuo-Zhong [3 ]
Wu, Pei Yuan [3 ]
机构
[1] Natl Cent Univ, Dept Math, Chungli 32001, Taiwan
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[3] Natl Yang Ming Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan
关键词
Numerical range; Numerical radius; Foguel operator;
D O I
10.1016/j.jmaa.2023.127484
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any operator T on & POUND;2, its associated Foguel operator FT is T where S is the (simple) unilateral shift. It is easily seen that the numerical radius w(FT) of FT satisfies 1 < w(FT) < 1 + (1/2)IITII. In this paper, we study when such upper and lower bounds of w(FT) are attained. For the upper bound, we show that w(FT) = 1 + (1/2)IITII if and only if w(S + T*S*T) = 1 + IITII2. When T is a diagonal operator with nonnegative diagonals, we obtain, among other results, that w(FT) = 1 + (1/2)IITII if and only if w(ST) = IITII. As for the lower bound, it is shown that any diagonal T with w(FT) = 1 is compact. Examples of various T's are given to illustrate such attainments of w(FT).& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 9 条
[1]   Inner derivations and norm equality [J].
Barraa, M ;
Boumazgour, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) :471-476
[2]  
Foguel S., 1964, Proc. Amer. Math. Soc., V15, P788, DOI DOI 10.2307/2034598
[3]   Numerical range of the Foguel-Halmos operator [J].
Gau, Hwa-Long ;
Wang, Kuo-Zhong ;
Wu, Pei Yuan .
STUDIA MATHEMATICA, 2022, 263 (03) :267-292
[4]   Numerical ranges of Foguel operators [J].
Gau, Hwa-Long ;
Wang, Kuo-Zhong ;
Wu, Pei Yuan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 610 :766-784
[5]  
Halmos P., 1964, Proc. Amer. Math. Soc., V15, P791
[6]  
Halmos P.R., 1982, Hilbert Space Problem Book
[7]  
Horn R.A., 2013, Matrix Analysis
[8]  
Wu P.Y., 2021, Numerical Ranges of Hilbert Space Op- erators, Encyclopedia of Mathematics and its Applications
[9]   APPROXIMATE UNITARY EQUIVALENCE OF NORMALOID TYPE OPERATORS [J].
Zhu, Sen .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (03) :173-193