A Self-Assembly Nano-Prodrug for Combination Therapy in Triple-Negative Breast Cancer Stem Cells

被引:22
作者
Wu, Chongzhi [1 ,2 ,3 ]
Zhang, Fu [2 ]
Li, Bowen [2 ]
Li, Zhiyao [2 ,3 ]
Xie, Xin [2 ]
Huang, Yong [2 ]
Yao, Zhuo [2 ]
Chen, Yuan [2 ]
Ping, Yuan [2 ,3 ]
Pan, Weidong [1 ,3 ]
机构
[1] Guizhou Univ, Sch Pharmaceut Sci, Guiyang 550025, Peoples R China
[2] Zhejiang Univ, Coll Pharmaceut Sci, Hangzhou 310058, Peoples R China
[3] Guizhou Med Univ, State Key Lab Funct & Applicat Med Plants, Guiyang 550014, Peoples R China
基金
中国国家自然科学基金;
关键词
cancer stem cells; combination therapy; ferroptosis; nano-prodrug; triple-negative breast cancer; HETEROGENEITY; RESISTANCE; IMPACT; IRON;
D O I
10.1002/smll.202301600
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Triple-negative breast cancer (TNBC) displays a highly aggressive nature that originates from a small subpopulation of TNBC stem cells (TNBCSCs), and these TNBCSCs give rise to chemoresistance, tumor metastasis, and recurrence. Unfortunately, traditional chemotherapy eradicates normal TNBC cells but fails to kill quiescent TNBCSCs. To explore a new strategy for eradicating TNBCSCs, a disulfide-mediated self-assembly nano-prodrug that can achieve the co-delivery of ferroptosis drug, differentiation-inducing agent, and chemotherapeutics for simultaneous TNBCSCs and TNBC treatment, is reported. In this nano-prodrug, the disulfide bond not only induces self-assembly behavior of different small molecular drug but also serves as a glutathione (GSH)-responsive trigger in controlled drug release. More importantly, the differentiation-inducing agent can transform TNBCSCs into normal TNBC cells, and this differentiation with chemotherapeutics provides an effective approach to indirectly eradicate TNBCSCs. In addition, ferroptosis therapy is essentially different from the apoptosis-induced cell death of differentiation or chemotherapeutic, which causes cell death to both TNBCSCs and normal TNBC cells. In different TNBC mouse models, this nano-prodrug significantly improves anti-tumor efficacy and effectively inhibits the tumor metastasis. This all-in-one strategy enables controlled drug release and reduces stemness-related drug resistance, enhancing the chemotherapeutic sensitivity in TNBC treatment.
引用
收藏
页数:17
相关论文
共 40 条
[21]   Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells [J].
Miao, Yuxuan ;
Yang, Hanseul ;
Levorse, John ;
Yuan, Shaopeng ;
Polak, Lisa ;
Sribour, Megan ;
Singh, Bhuvanesh ;
Rosenblum, Michael D. ;
Fuchs, Elaine .
CELL, 2019, 177 (05) :1172-+
[22]   Biological and Molecular Heterogeneity of Breast Cancers Correlates with Their Cancer Stem Cell Content [J].
Pece, Salvatore ;
Tosoni, Daniela ;
Confalonieri, Stefano ;
Mazzarol, Giovanni ;
Vecchi, Manuela ;
Ronzoni, Simona ;
Bernard, Loris ;
Viale, Giuseppe ;
Pelicci, Pier Giuseppe ;
Di Fiore, Pier Paolo .
CELL, 2010, 140 (01) :62-73
[23]   Nanocarriers as an emerging platform for cancer therapy [J].
Peer, Dan ;
Karp, Jeffrey M. ;
Hong, SeungPyo ;
FaroKHzad, Omid C. ;
Margalit, Rimona ;
Langer, Robert .
NATURE NANOTECHNOLOGY, 2007, 2 (12) :751-760
[24]   Development of a Cancer Vaccine Using In Vivo Click-Chemistry-Mediated Active Lymph Node Accumulation for Improved Immunotherapy [J].
Qin, Hao ;
Zhao, Ruifang ;
Qin, Yuting ;
Zhu, Jin ;
Chen, Long ;
Di, Chunzhi ;
Han, Xuexiang ;
Cheng, Keman ;
Zhang, Yinlong ;
Zhao, Ying ;
Shi, Jian ;
Anderson, Gregory J. ;
Zhao, Yuliang ;
Nie, Guangjun .
ADVANCED MATERIALS, 2021, 33 (20)
[25]   Combined treatment with arsenic trioxide and all-trans-retinoic acid in patients with relapsed acute promyelocytic leukemia [J].
Raffoux, E ;
Rousselot, P ;
Poupon, J ;
Daniel, MT ;
Cassinat, B ;
Delarue, R ;
Taksin, AL ;
Réa, D ;
Buzyn, A ;
Tibi, A ;
Lebbé, G ;
Cimerman, P ;
Chomienne, C ;
Fermand, JP ;
de Thé, H ;
Degos, L ;
Hermine, O ;
Dombret, H .
JOURNAL OF CLINICAL ONCOLOGY, 2003, 21 (12) :2326-2334
[26]   Stem cells, cancer, and cancer stem cells [J].
Reya, T ;
Morrison, SJ ;
Clarke, MF ;
Weissman, IL .
NATURE, 2001, 414 (6859) :105-111
[27]   Targeting Cancer Stemness in the Clinic: From Hype to Hope [J].
Saygin, Caner ;
Matei, Daniela ;
Majeti, Ravindra ;
Reizes, Ofer ;
Lathia, Justin D. .
CELL STEM CELL, 2019, 24 (01) :25-40
[28]   Cancer nanomedicine: progress, challenges and opportunities [J].
Shi, Jinjun ;
Kantoff, Philip W. ;
Wooster, Richard ;
Farokhzad, Omid C. .
NATURE REVIEWS CANCER, 2017, 17 (01) :20-37
[29]   EMT, CSCs, and drug resistance: the mechanistic link and clinical implications [J].
Shibue, Tsukasa ;
Weinberg, Robert A. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (10) :611-629
[30]   Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy [J].
Sun, Bingjun ;
Luo, Cong ;
Zhang, Xuanbo ;
Guo, Mengran ;
Sun, Mengchi ;
Yu, Han ;
Chen, Qin ;
Yang, Wenqian ;
Wang, Menglin ;
Zuo, Shiyi ;
Chen, Pengyu ;
Kan, Qiming ;
Zhang, Haotian ;
Wang, Yongjun ;
He, Zhonggui ;
Sun, Jin .
NATURE COMMUNICATIONS, 2019, 10 (1)