Class fields, Dirichlet characters, and extended genus fields of global function fields

被引:1
作者
Rzedowski-Calderon, Martha [1 ]
Villa-Salvador, Gabriel [1 ]
机构
[1] Ctr Invest & Estudios Avanzados IPN, Dept Control Automat, Ciudad De Mexico, Mexico
关键词
class fields; Dirichlet characters; extended genus fields; genus fields; global fields; ABELIAN EXTENSIONS;
D O I
10.1002/mana.202100570
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the extended genus field of an abelian extension of a rational function field. We follow the definition of Angles and Jaulent, which uses the class field theory. First, we show that the natural definition of extended genus field of a cyclotomic function field obtained by means of Dirichlet characters is the same as the one given by Angles and Jaulent. Next, we study the extended genus field of a finite abelian extension of a rational function field along the lines of the study of genus fields of abelian extensions of rational function fields. In the absolute abelian case, we compare this approach with the one given by Angles and Jaulent.
引用
收藏
页码:3606 / 3618
页数:13
相关论文
共 21 条
[1]  
Anglès B, 2000, MANUSCRIPTA MATH, V101, P513, DOI 10.1007/s002290050229
[2]   Genus theory for function fields [J].
Bae, SH ;
Koo, JK .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 60 :301-310
[3]   THE GENUS FIELD OF AN ALGEBRAIC FUNCTION-FIELD [J].
CLEMENT, R .
JOURNAL OF NUMBER THEORY, 1992, 40 (03) :359-375
[4]   GENUS FIELDS OF ABELIAN EXTENSIONS OF RATIONAL CONGRUENCE FUNCTION FIELDS, II [J].
Fernando Barreto-Castaneda, Jonny ;
Montelongo-Vazquez, Carlos ;
Daniel Reyes-Morales, Carlos ;
Rzedowski-Calderon, Martha ;
Villa-Salvador, Gabriel .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (07) :2099-2133
[5]  
FROHLICH A, 1959, MATHEMATIKA, V6, P40, DOI 10.1112/S0025579300001911
[6]  
Frohlich A., 1959, MATHEMATIKA, V6, P142
[7]   GENUS FIELD AND GENUS NUMBER IN ALGEBRAIC NUMBER FIELDS [J].
FURUTA, Y .
NAGOYA MATHEMATICAL JOURNAL, 1967, 29 (MAR) :281-&
[8]  
GAUSS C., 1965, Disquisitiones Arithmeticae
[9]  
HASSE H, 1951, J MATH SOC JAPAN, V3, P45, DOI DOI 10.2969/JMSJ/00310045
[10]  
HAYES DR, 1974, T AM MATH SOC, V189, P77