Auto-weighted collective matrix factorization with graph dual regularization for multi-view clustering

被引:24
作者
Liu, Mingyang [1 ]
Yang, Zuyuan [1 ]
Li, Lingjiang [1 ,2 ]
Li, Zhenni [1 ,3 ]
Xie, Shengli [1 ,4 ]
机构
[1] Guangdong Univ Technol, Sch Automation, Guangdong Key Lab IoT Informat Technol, Guangzhou 510006, Peoples R China
[2] Ante Laser Co Ltd, Guangzhou 510663, Peoples R China
[3] Minist Educ, Key Lab iDetect & Mfg IoT, Guangzhou 510006, Peoples R China
[4] Guangdong Hong Kong Macao Joint Lab Smart Discrete, Hong Kong 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi -view clustering; Nonnegative matrix factorization; Adaptive weight; Graph dual regularization;
D O I
10.1016/j.knosys.2022.110145
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering (MVC) is an attractive clustering paradigm that can incorporate comprehensive information from multiple views. Among the MVC schemes, collective matrix factorization (CMF) has shown its great power in extracting shared information of multi-view data. Based on CMF, we propose a novel unified MVC framework, named Auto-weighted Collective Matrix Factorization with Graph Dual Regularization (ACMF-GDR). Specifically, we assign adaptive weights for each view and incorporate the smoothing cluster structure learning term to construct a unified auto-weighted CMF for MVC. Our ACMF-GDR model can obtain the cluster labels and common representations of the samples in a one-step manner. Furthermore, to make the common representations discriminative, graph dual regularization terms with orthogonality constraints are adopted on multiple views to preserve the geometrical structure of the decomposed factors simultaneously. Experimental results show the superior clustering performance of the proposed method. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Auto-weighted sample-level fusion with anchors for incomplete multi-view clustering
    Yu, Xiao
    Liu, Hui
    Lin, Yuxiu
    Wu, Yan
    Zhang, Caiming
    PATTERN RECOGNITION, 2022, 130
  • [22] Auto-Weighted Multi-View Learning for Image Clustering and Semi-Supervised Classification
    Nie, Feiping
    Cai, Guohao
    Li, Jing
    Li, Xuelong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1501 - 1511
  • [23] Self-Weighted Multi-View Clustering with Deep Matrix Factorization
    Cui, Beilei
    Yu, Hong
    Zhang, Tiantian
    Li, Siwen
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 567 - 582
  • [24] Incomplete Multi-view Clustering via Graph Regularized Matrix Factorization
    Wen, Jie
    Zhang, Zheng
    Xu, Yong
    Zhong, Zuofeng
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT IV, 2019, 11132 : 593 - 608
  • [25] Multi-Graph Constraint Matrix Factorization for Multi-view Image Clustering
    Li, Guopeng
    Geng, Junfeng
    Liu, Jing
    Han, Kun
    2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020), 2020, : 415 - 418
  • [26] Adaptive KNN and graph-based auto-weighted multi-view consensus spectral learning
    Jiang, Zhenni
    Liu, Xiyu
    INFORMATION SCIENCES, 2022, 609 : 1132 - 1146
  • [27] Complete multi-view subspace clustering via auto-weighted combination of visible and latent views
    Cai, Bing
    Lu, Gui-Fu
    Ji, Guangyan
    Song, Weihong
    INFORMATION SCIENCES, 2024, 665
  • [28] Multi-view data clustering via non-negative matrix factorization with manifold regularization
    Khan, Ghufran Ahmad
    Hu, Jie
    Li, Tianrui
    Diallo, Bassoma
    Wang, Hongjun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (03) : 677 - 689
  • [29] Multi-view data clustering via non-negative matrix factorization with manifold regularization
    Ghufran Ahmad Khan
    Jie Hu
    Tianrui Li
    Bassoma Diallo
    Hongjun Wang
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 677 - 689
  • [30] Adaptive Multi-view Clustering Based on Nonnegative Matrix Factorization and Pairwise Co-regularization
    Zhang, Tianzhen
    Wang, Xiumei
    Gao, Xinbo
    NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615