Free boundary dimers: random walk representation and scaling limit

被引:0
作者
Berestycki, Nathanael [1 ]
Lis, Marcin [2 ]
Qian, Wei [3 ]
机构
[1] Univ Wien, Vienna, Austria
[2] Tech Univ Wien, Vienna, Austria
[3] City Univ Hong Kong, Kowloon Tong, Hong Kong, Peoples R China
基金
奥地利科学基金会; 英国工程与自然科学研究理事会;
关键词
82B20; GAUSSIAN UPPER-BOUNDS; CONFORMAL-INVARIANCE; TILINGS; TREES;
D O I
10.1007/s00440-023-01203-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the dimer model on subgraphs of the square lattice in which vertices on a prescribed part of the boundary (the free boundary) are possibly unmatched. Each such unmatched vertex is called a monomer and contributes a fixed multiplicative weight z > 0 to the total weight of the configuration. A bijection described by Giuliani et al. (J Stat Phys 163(2):211-238, 2016) relates this model to a standard dimer model but on a non-bipartite graph. The Kasteleyn matrix of this dimer model describes a walk with transition weights that are negative along the free boundary. Yet under certain assumptions, which are in particular satisfied in the infinite volume limit in the upper half-plane, we prove an effective, true random walk representation for the inverse Kasteleyn matrix. In this case we further show that, independently of the value of z > 0, the scaling limit of the centered height function is the Gaussian free field with Neumann (or free) boundary conditions. It is the first example of a discrete model where such boundary conditions arise in the continuum scaling limit.
引用
收藏
页码:735 / 812
页数:78
相关论文
共 40 条
[1]   ON BOUNDED-TYPE THIN LOCAL SETS OF THE TWO-DIMENSIONAL GAUSSIAN FREE FIELD [J].
Aru, Juhan ;
Sepulveda, Avelio ;
Werner, Wendelin .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2019, 18 (03) :591-618
[2]   On the Crossing Estimates for Simple Conformal Loop Ensembles [J].
Bai, Tianyi ;
Wan, Yijun .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (13) :11645-11683
[3]  
Barlow M. T., 2017, London Math. Soc. Lecture Note Ser, V438
[4]  
Basok M., 2018, ARXIV
[5]  
Berestycki N., 2019, ARXIV
[6]  
Berestycki N., 2020, IN PRESS
[7]  
Berestycki N., 2022, PIECEWISE TEMP UNPUB
[8]   DIMERS AND IMAGINARY GEOMETRY [J].
Berestycki, Nathanael ;
Laslier, Benoit ;
Ray, Gourab .
ANNALS OF PROBABILITY, 2020, 48 (01) :1-52
[9]   Height representation of XOR-Ising loops via bipartite dimers [J].
Boutillier, Cedric ;
de Tiliere, Beatrice .
ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19
[10]   Scaling limit of isoradial dimer models and the case of triangular quadri-tilings [J].
de Tiliere, Beatrice .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (06) :729-750