Phase-Space Geometry and Optimal State Preparation in Quantum Metrology with Collective Spins

被引:12
|
作者
Munoz-Arias, Manuel H. [1 ,2 ]
Deutsch, Ivan H. [1 ]
Poggi, Pablo M. [1 ,3 ,4 ]
机构
[1] Univ New Mexico, Ctr Quantum Informat & Control, Dept Phys & Astron, Albuquerque, NM 87131 USA
[2] Univ Sherbrooke, Inst Quant, Dept Phys, Sherbrooke J1K 2R1, PQ, Canada
[3] Univ Strathclyde, Dept Phys, Glasgow City G4 0NG, Scotland
[4] Univ Strathclyde, SUPA, Glasgow City G4, Scotland
来源
PRX QUANTUM | 2023年 / 4卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
ENTANGLEMENT; MODEL;
D O I
10.1103/PRXQuantum.4.020314
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We revisit well-known protocols in quantum metrology using collective spins and propose a unifying picture for optimal state preparation based on a semiclassical description in phase space. We show how this framework allows for quantitative predictions of the timescales required to prepare various metrologi-cally useful states, and that these predictions remain accurate even for moderate system sizes, surprisingly far from the classical limit. Furthermore, this framework allows us to build a geometric picture that relates optimal (exponentially fast) entangled probe preparation to the existence of separatrices connecting saddle points in phase space. We illustrate our results with the paradigmatic examples of the two-axis coun-tertwisting and twisting-and-turning Hamiltonians, where we provide analytical expressions for all the relevant optimal timescales. Finally, we propose a generalization of these models to include p-body col-lective interaction (orp-order twisting), beyond the usual case of p = 2. Using our geometric framework, we prove a no-go theorem for the local optimality of these models for p > 2.
引用
收藏
页数:27
相关论文
共 34 条
  • [21] Efficient generation of the triplet Bell state between coupled spins using transitionless quantum driving and optimal control
    Stefanatos, Dionisis
    Paspalakis, Emmanuel
    PHYSICAL REVIEW A, 2019, 99 (02)
  • [22] Arbitrary-quantum-state preparation of a harmonic oscillator via optimal control
    Rojan, Katharina
    Reich, Daniel M.
    Dotsenko, Igor
    Raimond, Jean-Michel
    Koch, Christiane P.
    Morigi, Giovanna
    PHYSICAL REVIEW A, 2014, 90 (02):
  • [23] Importance of realistic phase-space representations of initial quantum fluctuations using the stochastic mean-field approach for fermions
    Yilmaz, Bulent
    Lacroix, Denis
    Curebal, Resul
    PHYSICAL REVIEW C, 2014, 90 (05):
  • [24] Signatures of excited-state quantum phase transitions in quantum many-body systems: Phase space analysis
    Wang, Qian
    Perez-Bernal, Francisco
    PHYSICAL REVIEW E, 2021, 104 (03)
  • [25] Solid-state optimal phase-covariant quantum cloning machine
    Pan, Xin-Yu
    Liu, Gang-Qin
    Yang, Li-Li
    Fan, Heng
    APPLIED PHYSICS LETTERS, 2011, 99 (05)
  • [26] Faster State Preparation across Quantum Phase Transition Assisted by Reinforcement Learning
    Guo, Shuai-Feng
    Chen, Feng
    Liu, Qi
    Xue, Ming
    Chen, Jun-Jie
    Cao, Jia-Hao
    Mao, Tian-Wei
    Tey, Meng Khoon
    You, Li
    PHYSICAL REVIEW LETTERS, 2021, 126 (06)
  • [27] Fast Quantum State Preparation and Bath Dynamics Using Non-Gaussian Variational Ansatz and Quantum Optimal Control
    Bond, Liam J.
    Safavi-Naini, Arghavan
    Minar, Jiri
    PHYSICAL REVIEW LETTERS, 2024, 132 (17)
  • [28] Studying the squeezing effect and phase-space distribution of a single-photon-added coherent state using a postselected von Neumann measurement
    Xu, Wen Jun
    Yusufu, Taximaiti
    Turek, Yusuf
    PHYSICAL REVIEW A, 2022, 105 (02)
  • [29] Feasible preparation of polarization hybrid Greenberger-Horne-Zeilinger state based on optimal quantum scissors
    Cui, Shi-He
    Gu, Shi-Pu
    Wang, Xing-Fu
    Zhou, Lan
    Sheng, Yu-Bo
    QUANTUM INFORMATION PROCESSING, 2025, 24 (02)
  • [30] Finite-dimensional pair coherent state engendered via the nonlinear Bose operator realization and its Wigner phase-space distributions
    Liu, Jianming
    Meng, Xiangguo
    CHINESE PHYSICS B, 2019, 28 (12)