Phase-Space Geometry and Optimal State Preparation in Quantum Metrology with Collective Spins

被引:12
|
作者
Munoz-Arias, Manuel H. [1 ,2 ]
Deutsch, Ivan H. [1 ]
Poggi, Pablo M. [1 ,3 ,4 ]
机构
[1] Univ New Mexico, Ctr Quantum Informat & Control, Dept Phys & Astron, Albuquerque, NM 87131 USA
[2] Univ Sherbrooke, Inst Quant, Dept Phys, Sherbrooke J1K 2R1, PQ, Canada
[3] Univ Strathclyde, Dept Phys, Glasgow City G4 0NG, Scotland
[4] Univ Strathclyde, SUPA, Glasgow City G4, Scotland
来源
PRX QUANTUM | 2023年 / 4卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
ENTANGLEMENT; MODEL;
D O I
10.1103/PRXQuantum.4.020314
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We revisit well-known protocols in quantum metrology using collective spins and propose a unifying picture for optimal state preparation based on a semiclassical description in phase space. We show how this framework allows for quantitative predictions of the timescales required to prepare various metrologi-cally useful states, and that these predictions remain accurate even for moderate system sizes, surprisingly far from the classical limit. Furthermore, this framework allows us to build a geometric picture that relates optimal (exponentially fast) entangled probe preparation to the existence of separatrices connecting saddle points in phase space. We illustrate our results with the paradigmatic examples of the two-axis coun-tertwisting and twisting-and-turning Hamiltonians, where we provide analytical expressions for all the relevant optimal timescales. Finally, we propose a generalization of these models to include p-body col-lective interaction (orp-order twisting), beyond the usual case of p = 2. Using our geometric framework, we prove a no-go theorem for the local optimality of these models for p > 2.
引用
收藏
页数:27
相关论文
共 34 条
  • [1] Experimental demonstration of nonlinear quantum metrology with optimal quantum state
    Nie, Xinfang
    Huang, Jiahao
    Li, Zhaokai
    Zheng, Wenqiang
    Lee, Chaohong
    Peng, Xinhua
    Du, Jiangfeng
    SCIENCE BULLETIN, 2018, 63 (08) : 469 - 476
  • [2] Geometry of quantum state space and quantum correlations
    Deb, Prasenjit
    QUANTUM INFORMATION PROCESSING, 2016, 15 (04) : 1629 - 1638
  • [3] Geometry of quantum state space and quantum correlations
    Prasenjit Deb
    Quantum Information Processing, 2016, 15 : 1629 - 1638
  • [4] Geometry of quantum state space and entanglement
    Deb, Prasenjit
    Bej, Pratapaditya
    QUANTUM INFORMATION PROCESSING, 2019, 18 (03)
  • [5] Geometry of quantum state space and entanglement
    Prasenjit Deb
    Pratapaditya Bej
    Quantum Information Processing, 2019, 18
  • [6] Quantum metrology including state preparation and readout times
    Dooley, Shane
    Munro, William J.
    Nemoto, Kae
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [7] Quantum state geometry and entanglement of two spins with anisotropic interaction in evolution
    Kuzmak, A. R.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 116 : 81 - 89
  • [8] Protecting the Quantum Interference of Cat States by Phase-Space Compression
    Pan, Xiaozhou
    Schwinger, Jonathan
    Huang, Ni-Ni
    Song, Pengtao
    Chua, Weipin
    Hanamura, Fumiya
    Joshi, Atharv
    Valadares, Fernando
    Filip, Radim
    Gao, Yvonne Y.
    PHYSICAL REVIEW X, 2023, 13 (02):
  • [9] Phase-space interference in extensive and nonextensive quantum heat engines
    Hardal, Ali U. C.
    Paternostro, Mauro
    Mustecaplioglu, Ozgur E.
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [10] Generalized phase-space techniques to explore quantum phase transitions in critical quantum spin systems
    Millen, N. M.
    Rundle, R. P.
    Samson, J. H.
    Tilma, Todd
    Bishop, R. F.
    Everitt, M. J.
    ANNALS OF PHYSICS, 2023, 458