Effect of acetic acid inactivation of SARS-CoV-2

被引:11
作者
Amruta, Narayanappa [1 ]
Maness, Nicholas J. [2 ,3 ]
Gressett, Timothy E. [1 ,4 ]
Tsuchiya, Yoshihiro [5 ]
Kishi, Mikiya [5 ]
Bix, Gregory [1 ,4 ,6 ]
机构
[1] Tulane Univ, Clin Neurosci Res Ctr, Dept Neurosurg, Sch Med, New Orleans, LA 70118 USA
[2] Tulane Univ, Tulane Natl Primate Res Ctr, Covington, LA USA
[3] Tulane Univ, Dept Microbiol & Immunol, Sch Med, New Orleans, LA USA
[4] Tulane Univ, Tulane Brain Inst, New Orleans, LA 70118 USA
[5] Mizkan Holdings Co Ltd Aichi, Cent Res Inst, Handa, Japan
[6] Tulane Univ, Dept Neurol, Sch Med, New Orleans, LA 70118 USA
关键词
ELECTRON-MICROSCOPY; STABILITY;
D O I
10.1371/journal.pone.0276578
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Effective measures are needed to prevent the spread and infectivity of SARS-CoV-2 that causes COVID-19. Chemical inactivation may help to prevent the spread and transmission of this and other viruses. Hence, we tested the SARS-CoV-2 antiviral activity of acetic acid, the main component of vinegar, in vitro. Inactivation and binding assays suggest that acetic acid is virucidal. We found that 6% acetic acid, a concentration typically found in white distilled vinegar, effectively inactivated SARS-CoV-2 after 15-min incubation with a complete loss of replication of competent virus as measured by TCID50. Transmission electron microscopy further demonstrated that 6% acetic acid disrupts SARS-CoV-2 virion structure. In addition, 6% acetic acid significantly inhibits and disrupts the binding of SARS-CoV-2 spike protein binding to ACE2, the primary SARS-CoV-2 cell receptor, after contact with spike protein for 5, 10, 30 and 60 minutes incubation. Taken together, our findings demonstrate that acetic acid possesses inactivating activity against SARS-CoV-2 and may represent a safe alternative to commonly used chemical disinfectants to effectively control the spread of SARS-CoV-2.
引用
收藏
页数:10
相关论文
共 34 条
[1]   The Efficacy of Common Household Cleaning Agents for SARS-CoV-2 Infection Control [J].
Almeida, Catarina F. ;
Purcell, Damian F. J. ;
Godfrey, Dale I. ;
McAuley, Julie L. .
VIRUSES-BASEL, 2022, 14 (04)
[2]   Inactivation of avian influenza virus using four common chemicals and one detergent [J].
Alphin, R. L. ;
Johnson, K. J. ;
Ladman, B. S. ;
Benson, E. R. .
POULTRY SCIENCE, 2009, 88 (06) :1181-1185
[3]   Pharmacological and non-pharmacological efforts at prevention, mitigation, and treatment for COVID-19 [J].
Alvi, Mohammed M. ;
Sivasankaran, Sowmya ;
Singh, Mahima .
JOURNAL OF DRUG TARGETING, 2020, 28 (7-8) :742-754
[4]  
Amanat F, 2020, NAT MED, V26, P1033, DOI [10.1038/s41591-020-0913-5, 10.1101/2020.03.17.20037713]
[5]  
Amruta N., 2021, BIORXIV, DOI [10.1016/j.lfs.2021.119881, DOI 10.1016/J.LFS.2021.119881]
[6]   In Vivo protection from SARS-CoV-2 infection by ATN-161 in k18-hACE2 transgenic mice [J].
Amruta, Narayanappa ;
Engler-Chiurazzi, Elizabeth B. ;
Murray-Brown, Isabel C. ;
Gressett, Timothy E. ;
Biose, Ifechukwude J. ;
Chastain, Wesley H. ;
Befeler, Jaime B. ;
Bix, Gregory .
LIFE SCIENCES, 2021, 284
[7]  
[Anonymous], ?About us"
[8]   The Integrin Binding Peptide, ATN-161, as a Novel Therapy for SARS-CoV-2 Infection [J].
Beddingfield, Brandon J. ;
Iwanaga, Naoki ;
Chapagain, Prem P. ;
Zheng, Wenshu ;
Roy, Chad J. ;
Hu, Tony Y. ;
Kolls, Jay K. ;
Bix, Gregory J. .
JACC-BASIC TO TRANSLATIONAL SCIENCE, 2021, 6 (01) :1-8
[9]   Ultrastructural analysis of SARS-CoV-2 interactions with the host cell via high resolution scanning electron microscopy [J].
Caldas, Lucio Ayres ;
Carneiro, Fabiana Avila ;
Higa, Luiza Mendonca ;
Monteiro, Fabio Luiz ;
da Silva, Gustavo Peixoto ;
da Costa, Luciana Jesus ;
Durigon, Edison Luiz ;
Tanuri, Amilcar ;
de Souza, Wanderley .
SCIENTIFIC REPORTS, 2020, 10 (01)
[10]  
Chin AWH, 2020, LANCET MICROBE, V1, pE10, DOI [10.1016/S2666-5247(20)30003-3, 10.1016/S2666-5247(20)30095-1]