End-to-end lane detection with convolution and transformer

被引:2
作者
Ge, Zekun [1 ]
Ma, Chao [1 ,2 ]
Fu, Zhumu [1 ,2 ]
Song, Shuzhong [1 ,2 ]
Si, Pengju [1 ,2 ]
机构
[1] Henan Univ Sci & Technol, Coll Informat Engn, Kaiyuan Ave, Luoyang 471023, Henan, Peoples R China
[2] Henan Univ Sci & Technol, Henan Key Lab Robot & Intelligent Syst, Kaiyuan Ave, Luoyang 471023, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Lane detection system; Transformer; Self-attention mechanism; Global-Local training strategy; LINE DETECTION; NETWORK; ALGORITHM; FUSION;
D O I
10.1007/s11042-023-14622-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an end-to-end lane detection method based on the polynomial regression is proposed, combining CNNs and Transformer. Transformer proposes a self-attentive mechanism to model nonlocal interactions to capture global context. Then, an effective Global-Local training strategy is presented to capture a multi-scale feature, which is capable of capturing richer lane information involving structure and context, especially as the lane marking point is remote. And the obtained multi-scale feature map can be fused by utilizing different scale guidance. Finally, the proposed method is validated on the TuSimple benchmark, whose results show the accuracy can achieve 96.33% in models, and 11.1x faster than the popular Line-CNN model in "compute" time.
引用
收藏
页码:29607 / 29627
页数:21
相关论文
共 37 条
[1]   Self-driving cars: A survey [J].
Badue, Claudine ;
Guidolini, Ranik ;
Carneiro, Raphael Vivacqua ;
Azevedo, Pedro ;
Cardoso, Vinicius B. ;
Forechi, Avelino ;
Jesus, Luan ;
Berriel, Rodrigo ;
Paixao, Thiago M. ;
Mutz, Filipe ;
Veronese, Lucas de Paula ;
Oliveira-Santos, Thiago ;
De Souza, Alberto F. .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 165
[2]   Unsupervised Labeled Lane Markers Using Maps [J].
Behrendt, Karsten ;
Soussan, Ryan .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :832-839
[3]   CONTROL AND KINEMATIC DESIGN OF MULTI-DEGREE-OF-FREEDOM MOBILE ROBOTS WITH COMPLIANT LINKAGE [J].
BORENSTEIN, J .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1995, 11 (01) :21-35
[4]   LIDAR-camera fusion for road detection using fully convolutional neural networks [J].
Caltagirone, Luca ;
Bellone, Mauro ;
Svensson, Lennart ;
Wande, Mattias .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2019, 111 :125-131
[5]   Structural properties and classification of kinematic and dynamic models of wheeled mobile robots [J].
Campion, G ;
Bastin, G ;
DAndreaNovel, B .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1996, 12 (01) :47-62
[6]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[7]   Progressive LiDAR Adaptation for Road Detection [J].
Chen, Zhe ;
Zhang, Jing ;
Tao, Dacheng .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (03) :693-702
[8]  
Dai Z, 2021, ADV NEUR IN, V34
[9]   EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection [J].
Ghafoorian, Mohsen ;
Nugteren, Cedric ;
Baka, Nora ;
Booij, Olaf ;
Hofmann, Michael .
COMPUTER VISION - ECCV 2018 WORKSHOPS, PT I, 2019, 11129 :256-272
[10]  
github, 2017, TuSimple-benchmark