A hyperbolic generalized Zener model for nonlinear viscoelastic waves

被引:3
作者
Favrie, N. [2 ]
Lombard, B. [1 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, LMA UMR 7031, Marseille, France
[2] Aix Marseille Univ, CNRS, IUSTI UMR 7343, Polytech Marseille, Marseille, France
关键词
Hyperelasticity; Generalized Zener model; Memory variables; Hyperbolic systems; DIFFUSE INTERFACE MODEL; PROPAGATION; FORMULATION; DYNAMICS; FLUID; MEDIA;
D O I
10.1016/j.wavemoti.2022.103086
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A macroscopic model describing nonlinear viscoelastic waves is derived in Eulerian formulation, through the introduction of relaxation tensors. It accounts for both constitutive and geometrical nonlinearities. In the case of small deformations, the governing equations recover those of the linear generalized Zener model (GZM) with memory variables, which is widely used in acoustics and seismology. The structure of the relaxation terms implies that the model is dissipative. The chosen family of specific internal energies ensures also that the model is unconditionally hyperbolic. A Godunovtype scheme with relaxation is implemented. A procedure for maintaining isochoric transformations at the discrete level is introduced. Numerical examples are proposed to illustrate the properties of viscoelastic waves and nonlinear wave phenomena.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 42 条
[1]   Simulating transient wave phenomena in acoustic metamaterials using auxiliary fields [J].
Bellis, C. ;
Lombard, B. .
WAVE MOTION, 2019, 86 :175-194
[2]   Shear shock formation in incompressible viscoelastic solids [J].
Berjamin, H. ;
Chockalingam, S. .
WAVE MOTION, 2022, 110
[3]   Nonlinear waves in solids with slow dynamics: an internal-variable model [J].
Berjamin, H. ;
Favrie, N. ;
Lombard, B. ;
Chiavassa, G. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2201)
[4]   Highly accurate stability-preserving optimization of the Zener viscoelastic model, with application to wave propagation in the presence of strong attenuation [J].
Blanc, Emilie ;
Komatitsch, Dimitri ;
Chaljub, Emmanuel ;
Lombard, Bruno ;
Xie, Zhinan .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 205 (01) :427-439
[5]   High Order ADER Schemes for Continuum Mechanics [J].
Busto, Saray ;
Chiocchetti, Simone ;
Dumbser, Michael ;
Gaburro, Elena ;
Peshkov, Ilya .
FRONTIERS IN PHYSICS, 2020, 8
[6]  
Carcione J. M., 2007, Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media
[7]   Shear shock shock evolution in incompressible soft solids [J].
Chockalingam, S. ;
Cohen, T. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2020, 134
[8]  
Clayton J.D., 2020, MECH SOFT MAT, P2
[9]   SIMPLIFIED 2ND-ORDER GODUNOV-TYPE METHODS [J].
DAVIS, SF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (03) :445-473
[10]   Kink-type solitary waves within the quasi-linear viscoelastic model [J].
De Pascalis, Riccardo ;
Napoli, Gaetano ;
Saccomandi, Giuseppe .
WAVE MOTION, 2019, 86 :195-202