Certain midpoint-type Feje acute accent r and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel

被引:9
作者
Botmart, Thongchai [1 ]
Sahoo, Soubhagya Kumar [2 ]
Kodamasingh, Bibhakar [2 ]
Latif, Muhammad Amer [3 ]
Jarad, Fahd [4 ,5 ]
Kashuri, Artion [6 ]
机构
[1] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
[2] Siksha O Anusandhan Univ, Inst Tech Educ & Res, Dept Math, Bhubaneswar 751030, India
[3] King Faisal Univ, Dept Basic Sci, Al Hufuf 31982, Al Hasa, Saudi Arabia
[4] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkiye
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[6] Univ Ismail Qemali, Fac Tech & Nat Sci, Dept Math, Vlora 9400, Albania
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 03期
关键词
Hermite-Hadamard-Fejer inequalities; convex function; harmonically convex function; fractional integral operators; matrices; q-digamma functions; modifed Bessel functions; CONVEX-FUNCTIONS; DIFFERENTIABLE MAPPINGS; REAL NUMBERS; INEQUALITIES;
D O I
10.3934/math.2023283
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using positive symmetric functions, we offer two new important identities of fractional integral form for convex and harmonically convex functions. We then prove new variants of the Hermite-Hadamard-Fejer type inequalities for convex as well as harmonically convex functions via fractional integrals involving an exponential kernel. Moreover, we also present improved versions of midpoint type Hermite-Hadamard inequality. Graphical representations are given to validate the accuracy of the main results. Finally, applications associated with matrices, q-digamma functions and modifed Bessel functions are also discussed.
引用
收藏
页码:5616 / 5638
页数:23
相关论文
共 54 条
  • [1] Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals
    Ahmad, Bashir
    Alsaedi, Ahmed
    Kirane, Mokhtar
    Torebek, Berikbol T.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 353 : 120 - 129
  • [2] New Estimations of Hermite-Hadamard Type Integral Inequalities for Special Functions
    Ahmad, Hijaz
    Tariq, Muhammad
    Sahoo, Soubhagya Kumar
    Baili, Jamel
    Cesarano, Clemente
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [3] (k, ψ)-Proportional Fractional Integral Polya-Szego- and Gruss-Type Inequalities
    Aljaaidi, Tariq A.
    Pachpatte, Deepak B.
    Abdo, Mohammed S.
    Botmart, Thongchai
    Ahmad, Hijaz
    Almalahi, Mohammed A.
    Redhwan, Saleh S.
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [4] Generalized proportional fractional integral Hermite-Hadamard's inequalities
    Aljaaidi, Tariq A.
    Pachpatte, Deepak B.
    Abdeljawad, Thabet
    Abdo, Mohammed S.
    Almalahi, Mohammed A.
    Redhwan, Saleh S.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [5] Stability and existence results for a class of nonlinear fractional differential equations with singularity
    Alkhazzan, Abdulwasea
    Jiang, Peng
    Baleanu, Dumitru
    Khan, Hasib
    Khan, Aziz
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) : 9321 - 9334
  • [6] Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means
    Alomari, M.
    Darus, M.
    Kirmaci, U. S.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) : 225 - 232
  • [7] A MULTIPLE OPIAL TYPE INEQUALITY FOR THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES
    Andric, M.
    Pecaric, J.
    Peric, I.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (01): : 139 - 150
  • [8] On the time-fractional Cattaneo equation of distributed order
    Awad, Emad
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 518 : 210 - 233
  • [9] Bedi P, 2022, FRACTALS, V2022, DOI [10.1142/S0218348X22401491, DOI 10.1142/S0218348X22401491]
  • [10] A study of interval metric and its application in multi-objective optimization with interval objectives
    Bhunia, Asoke Kumar
    Samanta, Subhra Sankha
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2014, 74 : 169 - 178