The effect of co-pyrolysis of bamboo waste and polypropylene on biomass deoxygenation and carbonization processes

被引:12
|
作者
Hu, Qiang [1 ]
Zhang, Han [1 ,4 ]
Mao, Qiaoting [2 ]
Zhu, Jinjiao [3 ]
Zhang, Shihong [1 ]
Yang, Haiping [1 ]
Chen, Hanping [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Peoples R China
[2] China City Environm Protect Engn Ltd Co, Wuhan 430074, Peoples R China
[3] Yancheng Inst Technol, Sch Automot Engn, Hope Ave Middle Rd 1, Yancheng 224051, Jiangsu, Peoples R China
[4] 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Biomass; Plastic waste; Co; -pyrolysis; Deoxygenation; Carbonization; Biochar; LIGNOCELLULOSIC BIOMASS; THERMAL-BEHAVIOR; KINETICS; PLASTICS; GASIFICATION; DEGRADATION; PARAMETERS; MECHANISM; TAR;
D O I
10.1016/j.energy.2024.130339
中图分类号
O414.1 [热力学];
学科分类号
摘要
While numerous research studies have delved into the co -pyrolysis of biomass and plastic waste, limited attention has been devoted to comprehending the interaction mechanism that impacts biomass deoxygenation and carbonization. Therefore, this study explores the co -effect of temperature and polypropylene blending ratio on co -pyrolysis reaction kinetics, distribution of oxygenates/hydrocarbons, as well as the evolution of biochar structure. At a blending ratio of 0.5, the co -pyrolysis exhibits the lowest activation energy (146 kJ/mol), approximately 25.1 % lower than that required for individual pyrolysis. The interaction between bamboo waste with polypropylene increases the O -abstraction process, resulting in the creation of O -containing free radicals and hydrocarbon compounds. The peak proportion of aromatic compounds, reaching approximately 69.5 %, is observed at 700 degree celsius when the blending ratio is 0.5. The H -abstraction process converts large -molecular alkanes into H free radicals and tiny -molecular unsaturated hydrocarbons. The aliphatic functional group content diminishes as the polypropylene ratio increases. The maximum specific surface area (7.70 m(2)/g) and pore volume (21.7 mm(3)/g) are achieved at a blending ratio of 0.75. Notably, polypropylene exerts minimal influence on the graphite crystallite size and graphitization degree of biochar. This research significantly contributes to advancing our understanding of the interaction mechanisms between biomass and plastic waste.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Co-pyrolysis of torrefied biomass and coal: Effect of pressure on synergistic reactions
    Gouws, Saartjie M.
    Carrier, Marion
    Bunt, John R.
    Neomagus, Hein W. J. P.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 161
  • [32] Study of the co-pyrolysis of biomass and plastic wastes
    Filipe Paradela
    Filomena Pinto
    Ibrahim Gulyurtlu
    Isabel Cabrita
    Nuno Lapa
    Clean Technologies and Environmental Policy, 2009, 11 : 115 - 122
  • [33] Investigation of co-pyrolysis characteristics of modified coal gangue and biomass
    Huo, Xinguang
    Jia, Xiangru
    Song, Changzhong
    Hao, Songtao
    Zhang, Di
    Ding, Yaqian
    Liu, Shaoqing
    Zhang, Wenshuang
    THERMOCHIMICA ACTA, 2021, 705
  • [34] Thermal behavior, synergistic effect and thermodynamic parameter evaluations of biomass/plastics co-pyrolysis in a concentrating photothermal TGA
    Shagali, Abdulmajid Abdullahi
    Hu, Song
    Li, Hanjian
    Chi, Huanying
    Qing, Haoran
    Xu, Jun
    Jiang, Long
    Wang, Yi
    Su, Sheng
    Xiang, Jun
    FUEL, 2023, 331
  • [35] Co-pyrolysis of biomass/polyurethane foam waste: Thermodynamic study using Aspen Plus
    Patcharavorachot, Yaneeporn
    Pradiskhean, Supanat
    Aentung, Tanawat
    Saebea, Dang
    Arpornwichanop, Amornchai
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 183
  • [36] Catalytic co-pyrolysis of biomass and waste plastics as a route to upgraded bio-oil
    Dyer, Andrew C.
    Nahil, Mohamad A.
    Williams, Paul T.
    JOURNAL OF THE ENERGY INSTITUTE, 2021, 97 : 27 - 36
  • [37] Low-Temperature Co-pyrolysis of Polypropylene and Coffee Wastes to Fuels
    Zanella, Elena
    Della Zassa, Micol
    Navarini, Luciano
    Canu, Paolo
    ENERGY & FUELS, 2013, 27 (03) : 1357 - 1364
  • [38] Synergistic effect on co-pyrolysis mechanism and kinetics of waste coal blended with high-rank coal and biomass
    Krishna Kant Dwivedi
    A. K. Pramanick
    M. K. Karmakar
    P. K. Chatterjee
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 8323 - 8343
  • [39] Thermal behavior and kinetic study on the co-pyrolysis of biomass with polymer waste
    Yao, Zhitong
    Cai, Di
    Chen, Xinyang
    Sun, Yuhang
    Jin, Meiqing
    Qi, Wei
    Ding, Jiamin
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (02) : 1651 - 1662
  • [40] Co-pyrolysis characteristics and synergistic interaction of bamboo residues and disposable face mask
    Hou, Yanmei
    Feng, Zixing
    He, Yuyu
    Gao, Qi
    Ni, Liangmeng
    Su, Mengfu
    Ren, Hao
    Liu, Zhijia
    Hu, Wanhe
    RENEWABLE ENERGY, 2022, 194 : 415 - 425