Deep learning for head and neck semi-supervised semantic segmentation

被引:3
作者
Luan, Shunyao [1 ,2 ]
Ding, Yi [2 ]
Shao, Jiakang [1 ]
Zou, Bing [3 ]
Yu, Xiao [4 ]
Qin, Nannan [5 ]
Zhu, Benpeng [1 ]
Wei, Wei [2 ]
Xue, Xudong [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Integrated Circuits, Lab Optoelect, Wuhan, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Canc Hosp, TongJi Med Coll, Dept Radiat Oncol, Wuhan, Hubei, Peoples R China
[3] Nanchang Univ, Affiliated Hosp 2, Dept Oncol, Nanchang, Peoples R China
[4] Univ Sci & Technol China, Affiliated Hosp USTC 1, Dept Radiat Oncol, Div Life Sci & Med, Hefei, Peoples R China
[5] Bengbu Med Coll, Affiliated Hosp 1, Bengbu, Peoples R China
关键词
radiation therapy; semi-supervised semantic segmentation; domain shift; confirmation bias; deep learning; ORGANS; RISK; IMAGES;
D O I
10.1088/1361-6560/ad25c2
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Radiation therapy (RT) represents a prevalent therapeutic modality for head and neck (H&N) cancer. A crucial phase in RT planning involves the precise delineation of organs-at-risks (OARs), employing computed tomography (CT) scans. Nevertheless, the manual delineation of OARs is a labor-intensive process, necessitating individual scrutiny of each CT image slice, not to mention that a standard CT scan comprises hundreds of such slices. Furthermore, there is a significant domain shift between different institutions' H&N data, which makes traditional semi-supervised learning strategies susceptible to confirmation bias. Therefore, effectively using unlabeled datasets to support annotated datasets for model training has become a critical issue for preventing domain shift and confirmation bias. Approach. In this work, we proposed an innovative cross-domain orthogon-based-perspective consistency (CD-OPC) strategy within a two-branch collaborative training framework, which compels the two sub-networks to acquire valuable features from unrelated perspectives. More specifically, a novel generative pretext task cross-domain prediction (CDP) was designed for learning inherent properties of CT images. Then this prior knowledge was utilized to promote the independent learning of distinct features by the two sub-networks from identical inputs, thereby enhancing the perceptual capabilities of the sub-networks through orthogon-based pseudo-labeling knowledge transfer. Main results. Our CD-OPC model was trained on H&N datasets from nine different institutions, and validated on the four local intuitions' H&N datasets. Among all datasets CD-OPC achieved more advanced performance than other semi-supervised semantic segmentation algorithms. Significance. The CD-OPC method successfully mitigates domain shift and prevents network collapse. In addition, it enhances the network's perceptual abilities, and generates more reliable predictions, thereby further addressing the confirmation bias issue.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] MUTUAL EXCLUSIVITY LOSS FOR SEMI-SUPERVISED DEEP LEARNING
    Sajjadi, Mehdi
    Javanmardi, Mehran
    Tasdizen, Tolga
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1908 - 1912
  • [42] Deep semi-supervised learning for brain tumor classification
    Ge, Chenjie
    Gu, Irene Yu-Hua
    Jakola, Asgeir Store
    Yang, Jie
    BMC MEDICAL IMAGING, 2020, 20 (01)
  • [43] Weakly Supervised Semantic Segmentation Based on Deep Learning
    Liang, Binxiu
    Liu, Yan
    He, Linxi
    Li, Jiangyun
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC2019), 2020, 582 : 455 - 464
  • [44] Semi-Supervised and Unsupervised Deep Visual Learning: A Survey
    Chen, Yanbei
    Mancini, Massimiliano
    Zhu, Xiatian
    Akata, Zeynep
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) : 1327 - 1347
  • [45] Semi-Supervised Deep Learning for Microcontroller Performance Screening
    Bellarmino, Nicolo
    Cantoro, Riccardo
    Huch, Martin
    Kilian, Tobias
    Schlichtmann, Ulf
    Squillero, Giovanni
    2023 IEEE EUROPEAN TEST SYMPOSIUM, ETS, 2023,
  • [46] Learning From Pixel-Level Label Noise: A New Perspective for Semi-Supervised Semantic Segmentation
    Yi, Rumeng
    Huang, Yaping
    Guan, Qingji
    Pu, Mengyang
    Zhang, Runsheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 623 - 635
  • [47] Adversarial Learning Based Semi-supervised Semantic Segmentation of Low Resolution Gram Stained Microscopic Images
    Singh, Harshal
    Kanabur, Vidyashree R.
    Sumam, S. David
    Vijayasenan, Deepu
    Govindan, Sreejith
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT II, 2024, 2010 : 362 - 373
  • [48] Automatic segmentation of optic disc in retinal fundus images using semi-supervised deep learning
    Shaleen Bengani
    Angel Arul Jothi J.
    Vadivel S.
    Multimedia Tools and Applications, 2021, 80 : 3443 - 3468
  • [49] Semi-supervised learning for concrete defect segmentation from images
    Wang, Wenjun
    Su, Chao
    Han, Guohui
    Hu, Shaopei
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (05): : 3026 - 3045
  • [50] SCANet: A Unified Semi-Supervised Learning Framework for Vessel Segmentation
    Shen, Ning
    Xu, Tingfa
    Bian, Ziyang
    Huang, Shiqi
    Mu, Feng
    Huang, Bo
    Xiao, Yuze
    Li, Jianan
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (09) : 2476 - 2489