Sun's Series via Cyclotomic Multiple Zeta Values

被引:1
作者
Zhou, Yajun [1 ,2 ]
机构
[1] Princeton Univ, Program Appl & Computat Math PACM, Princeton, NJ 08544 USA
[2] Peking Univ, Acad Adv Interdisciplinary Studies AAIS, Beijing 100871, Peoples R China
关键词
Sun's series; binomial coefficients; harmonic numbers; cyclotomic multiple zeta values; BINOMIAL SUMS; EXPANSION; DIAGRAMS;
D O I
10.3842/SIGMA.2023.074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove and generalize several recent conjectures of Z.-W. Sun surrounding binomial coefficients and harmonic numbers. We show that Sun's series and their analogs can be represented as cyclotomic multiple zeta values of levels N E {4, 8,12,16, 24}, namely Goncharov's multiple polylogarithms evaluated at N-th roots of unity.
引用
收藏
页数:20
相关论文
共 23 条
  • [1] Iterated binomial sums and their associated iterated integrals
    Ablinger, J.
    Bluemlein, J.
    Raab, C. G.
    Schneider, C.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)
  • [2] Discovering and Proving Infinite Pochhammer Sum Identities
    Ablinger, Jakob
    [J]. EXPERIMENTAL MATHEMATICS, 2022, 31 (01) : 309 - 323
  • [3] Discovering and Proving Infinite Binomial Sums Identities
    Ablinger, Jakob
    [J]. EXPERIMENTAL MATHEMATICS, 2017, 26 (01) : 62 - 71
  • [4] Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms
    Ablinger, Jakob
    Bluemlein, Johannes
    Schneider, Carsten
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (08)
  • [5] Harmonic sums and polylogarithms generated by cyclotomic polynomials
    Ablinger, Jakob
    Bluemlein, Johannes
    Schneider, Carsten
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (10)
  • [6] Au KC, 2024, Arxiv, DOI arXiv:2007.03957
  • [7] Au KC, 2022, Arxiv, DOI arXiv:2201.01676
  • [8] Charlton S, 2022, Arxiv, DOI arXiv:2210.14704
  • [9] Massive Feynman diagrams and inverse binomial sums
    Davydychev, AI
    Kalmykov, MY
    [J]. NUCLEAR PHYSICS B, 2004, 699 (1-2) : 3 - 64
  • [10] New results for the ε-expansion of certain one-, two- and three-loop Feynman diagrams
    Davydychev, AI
    Kalmykov, MY
    [J]. NUCLEAR PHYSICS B, 2001, 605 (1-3) : 266 - 318