Generalized Besov-type and Triebel-Lizorkin-type spaces

被引:6
作者
Haroske, Dorothee d. [1 ]
Liu , Zhen [1 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Math, D-07737 Jena, Germany
关键词
generalized Besov-type spaces; generalized Triebel-Lizorkin-type spaces; atomic decompositions; MORREY SPACES; DECOMPOSITION;
D O I
10.4064/sm230218-4-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 0 < p < oo, 0 < q <= infinity, and s is an element of R. We introduce a new type of generalized Besov-type spaces B-p,q(s,phi) (R-d) and generalized Triebel-Lizorkin-type spaces F-p,q(s,phi) (R-d), where phi belongs to the class Gp, that is, phi : (0, infinity) -> (0, infinity) is nondecreasing and t(-d/p)phi(t) is nonincreasing in t > 0. We establish several properties of these spaces, including some embedding properties. We also obtain the atomic decomposition of the spaces B-p,q(s,phi) (Rd) and F-p,q(s,phi) (R-d).
引用
收藏
页码:161 / 199
页数:39
相关论文
共 36 条
[1]   Generalized Morrey Spaces - Revisited [J].
Akbulut, Ali ;
Guliyev, Vagif Sabir ;
Noi, Takahiro ;
Sawano, Yoshihiro .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2017, 36 (01) :17-35
[2]  
[Anonymous], 1992, Monogr. Math.
[3]  
Baraka AE., 2006, J. Funct. Spaces Appl, V4, P193, DOI DOI 10.1155/2006/921520
[4]  
El Baraka A, 2002, P 2002 FEZ C PART DI, V9, P109
[5]  
El Baraka A, 2002, ELECTRON J DIFFER EQ
[6]   SOME MAXIMAL INEQUALITIES [J].
FEFFERMAN, C ;
STEIN, EM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (01) :107-+
[7]   DECOMPOSITION OF BESOV-SPACES [J].
FRAZIER, M ;
JAWERTH, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (04) :777-799
[8]   A DISCRETE TRANSFORM AND DECOMPOSITIONS OF DISTRIBUTION SPACES [J].
FRAZIER, M ;
JAWERTH, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (01) :34-170
[9]   Morrey smoothness spaces: A new approach [J].
Haroske, Dorothee D. ;
Triebel, Hans .
SCIENCE CHINA-MATHEMATICS, 2023, 66 (06) :1301-1358
[10]   Wavelet decomposition and embeddings of generalised Besov-Morrey spaces [J].
Haroske, Dorothee D. ;
Moura, Susana D. ;
Skrzypczak, Leszek .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214