Cooperative Swarm Intelligence Algorithms for Adaptive Multilevel Thresholding Segmentation of COVID-19 CT-Scan Images

被引:4
|
作者
Sabha, Muath [1 ]
Thaher, Thaer [2 ]
Emam, Marwa M. [3 ]
机构
[1] Arab Amer Univ, Fac Engn & Informat Technol, Informat Technol Dept, Jenin, Palestine
[2] Arab Amer Univ, Comp Syst Engn Dept, Jenin, Palestine
[3] Minia Univ, Fac Comp & Informat, Al Minya, Egypt
关键词
Swarm Intelligence algorithms; Image segmentation; Computer Vision; Multilevel thresholding; Metaheuristics; RAY FORAGING OPTIMIZATION; BIO-INSPIRED OPTIMIZER; SEARCH ALGORITHM; ENTROPY; CLASSIFICATION; MACHINE;
D O I
10.3897/jucs.93498
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Coronavirus Disease 2019 (COVID-19) is widespread throughout the world and poses a serious threat to public health and safety. A COVID-19 infection can be recognized using computed tomography (CT) scans. To enhance the categorization, some image segmentation techniques are presented to extract regions of interest from COVID-19 CT images. Multi-level thresholding (MLT) is one of the simplest and most effective image segmentation approaches, especially for grayscale images like CT scan images. Traditional image segmentation methods use histogram approaches; however, these approaches encounter some limitations. Now, swarm intelligence inspired meta-heuristic algorithms have been applied to resolve MLT, deemed an NP-hard optimization task. Despite the advantages of using meta-heuristics to solve global optimization tasks, each approach has its own drawbacks. However, the common flaw for most meta-heuristic algorithms is that they are unable to maintain the diversity of their population during the search, which means they might not always converge to the global optimum. This study proposes a cooperative swarm intelligence-based MLT image segmentation approach that hybridizes the advantages of parallel meta-heuristics and MLT for developing an efficient image segmentation method for COVID-19 CT images. An efficient cooperative model-based meta-heuristic called the CPGH is developed based on three practical algorithms: particle swarm optimization (PSO), grey wolf optimizer (GWO), and Harris hawks optimization (HHO). In the cooperative model, the applied algorithms are executed concurrently, and a number of potential solutions are moved across their populations through a procedure called migration after a set number of generations. The CPGH model can solve the image segmentation problem using MLT image segmentation. The proposed CPGH is evaluated using three objective functions, cross-entropy, Otsu's, and Tsallis, over the COVID-19 CT images selected from open-sourced datasets. Various evaluation metrics covering peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and universal quality image index (UQI) were employed to quantify the segmentation quality. The overall ranking results of the segmentation quality metrics indicate that the performance of the proposed CPGH is better than conventional PSO, GWO, and HHO algorithms and other state-of-the-art methods for MLT image segmentation. On the tested COVID-19 CT images, the CPGH offered an average PSNR of 24.8062, SSIM of 0.8818, and UQI of 0.9097 using 20 thresholds.
引用
收藏
页码:759 / 804
页数:46
相关论文
共 50 条
  • [41] Two-stage hybrid network for segmentation of COVID-19 pneumonia lesions in CT images: a multicenter study
    Shang, Yaxin
    Wei, Zechen
    Hui, Hui
    Li, Xiaohu
    Li, Liang
    Yu, Yongqiang
    Lu, Ligong
    Li, Li
    Li, Hongjun
    Yang, Qi
    Wang, Meiyun
    Zhan, Meixiao
    Wang, Wei
    Zhang, Guanghao
    Wu, Xiangjun
    Wang, Li
    Liu, Jie
    Tian, Jie
    Zha, Yunfei
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022, 60 (09) : 2721 - 2736
  • [42] CAD systems for COVID-19 diagnosis and disease stage classification by segmentation of infected regions from CT images
    Mohammad H. Alshayeji
    Silpa ChandraBhasi Sindhu
    Sa’ed Abed
    BMC Bioinformatics, 23
  • [43] CAD systems for COVID-19 diagnosis and disease stage classification by segmentation of infected regions from CT images
    Alshayeji, Mohammad H.
    ChandraBhasi Sindhu, Silpa
    Abed, Sa'ed
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [44] Ensemble deep honey architecture for COVID-19 prediction using CT scan and chest X-ray images
    Reddy, B. Bhaskar
    Sudhakar, M. Venkata
    Reddy, P. Rahul
    Reddy, P. Raghava
    MULTIMEDIA SYSTEMS, 2023, 29 (04) : 2009 - 2035
  • [45] Ensemble deep honey architecture for COVID-19 prediction using CT scan and chest X-ray images
    B. Bhaskar Reddy
    M. Venkata Sudhakar
    P. Rahul Reddy
    P. Raghava Reddy
    Multimedia Systems, 2023, 29 : 2009 - 2035
  • [46] COVID-19 diagnosis prediction using classical-to-quantum ensemble model with transfer learning for CT scan images
    Li, Wenqian
    Deng, Xing
    Zhao, Haorong
    Shao, Haijian
    Jiang, Yingtao
    IMAGING SCIENCE JOURNAL, 2021, 69 (5-8) : 319 - 333
  • [47] P2P-COVID-GAN: Classification and Segmentation of COVID-19 Lung Infections From CT Images Using GAN
    Abirami, Nandhini
    Vincent, Durai Raj
    Kadry, Seifedine
    INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2021, 17 (04) : 101 - 118
  • [48] BCS-Net: Boundary, Context, and Semantic for Automatic COVID-19 Lung Infection Segmentation From CT Images
    Cong, Runmin
    Yang, Haowei
    Jiang, Qiuping
    Gao, Wei
    Li, Haisheng
    Wang, Cong
    Zhao, Yao
    Kwong, Sam
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [49] MWG-Net: Multiscale Wavelet Guidance Network for COVID-19 Lung Infection Segmentation From CT Images
    Hu, Kai
    Tan, Hui
    Zhang, Yuan
    Huang, Wei
    Gao, Xieping
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [50] Small size CNN-Based COVID-19 Disease Prediction System using CT scan images on PaaS cloud
    Lanjewar, Madhusudan G.
    Panchbhai, Kamini G.
    Charanarur, Panem
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (21) : 60655 - 60687