Homogenization of a semilinear elliptic problem in a thin composite domain with an imperfect interface

被引:3
作者
Ma, Hongru [1 ]
Tang, Yanbin [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
homogenization; imperfect interface; periodic unfolding method; semilinear elliptic problem; thin composite domain; PERIODIC UNFOLDING METHOD; TRANSMISSION;
D O I
10.1002/mma.9628
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the asymptotic behavior of a semilinear elliptic problem in a thin two-composite domain with an imperfect interface, where the flux is discontinuous. For this thin domain, both the height and the period are of order epsilon. We first use Minty-Browder theorem to prove the well-posedness of the problem and then apply the periodic unfolding method to obtain the limit problems and some corrector results for three cases of a real parameter gamma = -1, gamma is an element of (-1, 1) and gamma < -1, respectively. To deal with the semilinear terms, the extension operator and the averaged function are used.
引用
收藏
页码:19329 / 19350
页数:22
相关论文
共 36 条
[1]  
[Anonymous], 2000, Applicable Analysis
[2]  
[Anonymous], 1964, Topological Methods in the Theory of Nonlinear Integral Equations
[3]   DERIVATION OF THE DOUBLE POROSITY MODEL OF SINGLE-PHASE FLOW VIA HOMOGENIZATION THEORY [J].
ARBOGAST, T ;
DOUGLAS, J ;
HORNUNG, U .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (04) :823-836
[4]   MACROSCOPIC MODELING OF HEAT-TRANSFER IN COMPOSITES WITH INTERFACIAL THERMAL BARRIER [J].
AURIAULT, JL ;
ENE, HI .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1994, 37 (18) :2885-2892
[5]   Effective transmission conditions for reaction-diffusion processes in domains separated by thin channels [J].
Bhattacharya, Apratim ;
Gahn, Markus ;
Neuss-Radu, Maria .
APPLICABLE ANALYSIS, 2022, 101 (06) :1896-1910
[6]  
Bunoiu R, 2022, ROM REP PHYS, V74
[7]   Upscaling of a double porosity problem with jumps in thin porous media [J].
Bunoiu, Renata ;
Timofte, Claudia .
APPLICABLE ANALYSIS, 2022, 101 (09) :3497-3514
[8]   Upscaling of a diffusion problem with interfacial flux jump leading to a modified Barenblatt model [J].
Bunoiu, Renata ;
Timofte, Claudia .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (02)
[9]   ON THE HOMOGENIZATION OF A TWO-CONDUCTIVITY PROBLEM WITH FLUX JUMP [J].
Bunoiu, Renata ;
Timofte, Claudia .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (03) :745-763
[10]   HOMOGENIZATION OF A THERMAL PROBLEM WITH FLUX JUMP [J].
Bunoiu, Renata ;
Timofte, Claudia .
NETWORKS AND HETEROGENEOUS MEDIA, 2016, 11 (04) :545-562