Chemical Vapor Deposition Growth of Graphene on 200 mm Ge(110)/Si Wafers and Ab Initio Analysis of Differences in Growth Mechanisms on Ge(110) and Ge(001)

被引:9
作者
Akhtar, Fatima [1 ]
Dabrowski, Jaroslaw [1 ]
Lukose, Rasuole [1 ]
Wenger, Christian [1 ,2 ]
Lukosius, Mindaugas [1 ]
机构
[1] IHP Leibniz Inst Innovat Mikroelekt, D-15236 Frankfurt, Germany
[2] BTU Cottbus Senftenberg, D-03046 Cottbus, Germany
关键词
graphene; chemical vapor deposition; faceting; ab initio calculations; germanium; SINGLE-CRYSTAL GRAPHENE; GERMANIUM; PASSIVATION; SURFACES; STRAIN; CARBON;
D O I
10.1021/acsami.3c05860
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
For the fabrication of modern graphene devices, uniformgrowthof high-quality monolayer graphene on wafer scale is important. Thiswork reports on the growth of large-scale graphene on semiconducting8 inch Ge(110)/Si wafers by chemical vapor deposition and a DFT analysisof the growth process. Good graphene quality is indicated by the smallFWHM (32 cm(-1)) of the Raman 2D band, low intensityratio of the Raman D and G bands (0.06), and homogeneous SEM imagesand is confirmed by Hall measurements: high mobility (2700 cm(2)/Vs) and low sheet resistance (800 & omega;/sq). In contrastto Ge(001), Ge(110) does not undergo faceting during the growth. Weargue that Ge(001) roughens as a result of vacancy accumulation atpinned steps, easy motion of bonded graphene edges across (107) facets,and low energy cost to expand Ge area by surface vicinals, but onGe(110), these mechanisms do not work due to different surface geometriesand complex reconstruction.
引用
收藏
页码:36966 / 36974
页数:9
相关论文
共 60 条
[1]   Investigation of the Oxidation Behavior of Graphene/Ge(001) Versus Graphene/Ge(110) Systems [J].
Akhtar, Fatima ;
Dabrowski, Cjaroslaw ;
Lisker, Marco ;
Yamamoto, Yuji ;
Mai, Andreas ;
Wenger, Christian ;
Lukosius, Mindaugas .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (02) :3188-3197
[2]   High-Mobility Epitaxial Graphene on Ge/Si(100) Substrates [J].
Aprojanz, J. ;
Rosenzweig, Ph ;
Nguyen, T. T. Nhung ;
Karakachian, H. ;
Kuester, K. ;
Starke, U. ;
Lukosius, M. ;
Lippert, G. ;
Sinterhauf, A. ;
Wenderoth, M. ;
Zakharov, A. A. ;
Tegenkamp, C. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (38) :43065-43072
[3]   Identifying suitable substrates for high-quality graphene-based heterostructures [J].
Banszerus, L. ;
Janssen, H. ;
Otto, M. ;
Epping, A. ;
Taniguchi, T. ;
Watanabe, K. ;
Beschoten, B. ;
Neumaier, D. ;
Stampfer, C. .
2D MATERIALS, 2017, 4 (02)
[4]   Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper [J].
Banszerus, Luca ;
Schmitz, Michael ;
Engels, Stephan ;
Dauber, Jan ;
Oellers, Martin ;
Haupt, Federica ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Beschoten, Bernd ;
Stampfer, Christoph .
SCIENCE ADVANCES, 2015, 1 (06)
[5]   Raman characterization of defects and dopants in graphene [J].
Beams, Ryan ;
Cancado, Luiz Gustavo ;
Novotny, Lukas .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (08)
[6]   Direct growth of graphene on Ge(100) and Ge(110) via thermal and plasma enhanced CVD [J].
Bekduez, Bilge ;
Kaya, Umut ;
Langer, Moritz ;
Mertin, Wolfgang ;
Bacher, Gerd .
SCIENTIFIC REPORTS, 2020, 10 (01)
[7]  
Benaglia T, 2009, J STAT SOFTW, V32, P1
[8]   Near-Equilibrium Chemical Vapor Deposition of High-Quality Single-Crystal Graphene Directly on Various Dielectric Substrates [J].
Chen, Jianyi ;
Guo, Yunlong ;
Jiang, Lili ;
Xu, Zhiping ;
Huang, Liping ;
Xue, Yunzhou ;
Geng, Dechao ;
Wu, Bin ;
Hu, Wenping ;
Yu, Gui ;
Liu, Yunqi .
ADVANCED MATERIALS, 2014, 26 (09) :1348-1353
[9]   Towards Flexible All-Carbon Electronics: Flexible Organic Field-Effect Transistors and Inverter Circuits Using Solution-Processed All-Graphene Source/Drain/Gate Electrodes [J].
Chen, Yongsheng ;
Xu, Yanfei ;
Zhao, Kai ;
Wan, Xiangjian ;
Deng, Jiachun ;
Yan, Weibo .
NANO RESEARCH, 2010, 3 (10) :714-721
[10]   ATOMIC-STRUCTURE OF CLEAN SI(113) SURFACES - THEORY AND EXPERIMENT [J].
DABROWSKI, J ;
MUSSIG, HJ ;
WOLFF, G .
PHYSICAL REVIEW LETTERS, 1994, 73 (12) :1660-1663