Method for detecting rare differences between two LC-MS runs

被引:1
作者
Zhang, Zhongqi [1 ]
Richardson, Jason [1 ]
Shah, Bhavana [1 ]
机构
[1] Amgen Inc, Proc Dev, 1 Amgen Ctr Dr, Thousand Oaks, CA 91320 USA
关键词
Mass spectrometry; Multi -attribute method; New peak detection; False positive; False negative; False discovery rate; INDUCED-DISSOCIATION SPECTRA; PREDICTION; PEPTIDES;
D O I
10.1016/j.ab.2023.115211
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
LC-MS based multi-attribute methods (MAM) have drawn substantial attention due to their capability of simultaneously monitoring a large number of quality attributes of a biopharmaceutical product. For successful implementation of MAM, it is usually considered a requirement that the method is capable of detecting any new or missing peaks in the sample when compared to a control. Comparing a sample to a control for rare differences is also commonly practiced in many fields for investigational purpose. Because MS signal variability differs greatly between signals of different intensities, this type of comparison is often challenging, especially when the comparison is made without enough replicates. In this report we describe a statistical method for detecting rare differences between two very similar samples without replicate analyses. The method assumes that an overwhelming majority of components have equivalent abundance between the two samples, and signals with similar intensities have similar relative variability. By analyzing several monoclonal antibody peptide mapping datasets, we demonstrated that the method is suitable for new-peak detection for MAM as well as for other applications when rare differences between two samples need to be detected. The method greatly reduced false positive rate without a significant increase of false negative rate.
引用
收藏
页数:8
相关论文
共 17 条
[1]   Enabling development, manufacturing, and regulatory approval of biotherapeutics through advances in mass spectrometry [J].
Apostol, Izydor ;
Bondarenko, Pavel, V ;
Ren, Da ;
Semin, David J. ;
Wu, Chao-Hsiang ;
Zhang, Zhongqi ;
Goudar, Chetan T. .
CURRENT OPINION IN BIOTECHNOLOGY, 2021, 71 :206-215
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   Tracking the Behavior of Monoclonal Antibody Product Quality Attributes Using a Multi-Attribute Method Workflow [J].
Jakes, Craig ;
Millan-Martin, Silvia ;
Carillo, Sara ;
Scheffler, Kai ;
Zaborowska, Izabela ;
Bones, Jonathan .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2021, 32 (08) :1998-2012
[4]   Analytical Performance Evaluation of Identity, Quality-Attribute Monitoring and new Peak Detection in a Platform Multi-Attribute Method Using Lys-C Digestion for Characterization and Quality Control of Therapeutic Monoclonal Antibodies [J].
Li, Xuanwen ;
Pierson, Nicholas A. ;
Hua, Xiaoqing ;
Patel, Bhumit A. ;
Olma, Michael H. ;
Strulson, Christopher A. ;
Letarte, Simon ;
Richardson, Douglas D. .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2023, 112 (03) :691-699
[5]   New Peak Detection Performance Metrics from the MAM Consortium Interlaboratory Study [J].
Mouchahoir, Trina ;
Schiel, John E. ;
Rogers, Rich ;
Heckert, Alan ;
Place, Benjamin J. ;
Ammerman, Aaron ;
Li, Xiaoxiao ;
Robinson, Tom ;
Schmidt, Brian ;
Chumsae, Chris M. ;
Li, Xinbi ;
Manuilov, Anton, V ;
Yan, Bo ;
Staples, Gregory O. ;
Ren, Da ;
Veach, Alexander J. ;
Wang, Dongdong ;
Yared, Wael ;
Sosic, Zoran ;
Wang, Yan ;
Zang, Li ;
Leone, Anthony M. ;
Liu, Peiran ;
Ludwig, Richard ;
Tao, Li ;
Wu, Wei ;
Cansizoglu, Ahmet ;
Hanneman, Andrew ;
Adams, Greg W. ;
Perdivara, Irina ;
Walker, Hunter ;
Wilson, Margo ;
Brandenburg, Arnd ;
DeGraan-Weber, Nick ;
Gotta, Stefano ;
Shambaugh, Joe ;
Alvarez, Melissa ;
Yu, X. Christopher ;
Cao, Li ;
Shao, Chun ;
Mahan, Andrew ;
Nanda, Hirsh ;
Nields, Kristen ;
Nightlinger, Nancy ;
Barysz, Helena Maria ;
Jahn, Michael ;
Niu, Ben ;
Wang, Jihong ;
Leo, Gabriella ;
Sepe, Nunzio .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2021, 32 (04) :913-928
[6]   Advancing Mass Spectrometry Technology in cGMP Environments [J].
Ren, Da .
TRENDS IN BIOTECHNOLOGY, 2020, 38 (10) :1051-1053
[7]   AView on the Importance of "Multi-Attribute Method" for Measuring Purity of Biopharmaceuticals and Improving Overall Control Strategy [J].
Rogers, Richard S. ;
Abernathy, Michael ;
Richardson, Douglas D. ;
Rouse, Jason C. ;
Sperry, Justin B. ;
Swann, Patrick ;
Wypych, Jette ;
Yu, Christopher ;
Zang, Li ;
Deshpande, Rohini .
AAPS JOURNAL, 2018, 20 (01)
[8]   Multi-Attribute Method for Quality Control of Therapeutic Proteins [J].
Rogstad, Sarah ;
Yan, Haoheng ;
Wang, Xiaoshi ;
Powers, David ;
Brorson, Kurt ;
Damdinsuren, Bazarragchaa ;
Lee, Sau .
ANALYTICAL CHEMISTRY, 2019, 91 (22) :14170-14177
[9]  
Williams VSL, 1999, J EDUC BEHAV STAT, V24, P42, DOI 10.2307/1165261
[10]   A Mass Spectrometric Characterization of Light-Induced Modifications in Therapeutic Proteins [J].
Zhang, Zhongqi ;
Chow, Sih-Yao ;
De Guzman, Ronandro ;
Joh, Nathan H. ;
Joubert, Marisa K. ;
Richardson, Jason ;
Shah, Bhavana ;
Wikstrom, Mats ;
Zhou, Zhaohui Sunny ;
Wypych, Jette .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2022, 111 (06) :1556-1564