Coupling continuous CO2 electroreduction to formate with efficient Ni-based anodes

被引:21
作者
Diaz-Sainz, Guillermo [1 ]
Fernandez-Caso, Kevin [1 ]
Lagarteira, Tiago [2 ]
Delgado, Sofia [2 ]
Alvarez-Guerra, Manuel [1 ]
Mendes, Adelio [2 ]
Irabien, Angel [1 ]
机构
[1] Univ Cantabria, Dept Ingn Quim & Biomol, ETSIIyT, Ave Los Castros S-N, Santander 39005, Spain
[2] Univ Porto, Lab Proc Engn Environm Biotechnol & Energy LEPABE, Rua Dr Roberto Frias S-n, P-4200465 Porto, Portugal
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2023年 / 11卷 / 01期
关键词
Electrocatalytic CO2 reduction; Formate; NiO catalyst; Counter electrodes; Oxygen evolution reaction; GAS-DIFFUSION ELECTRODES; CARBON-DIOXIDE; FORMIC-ACID; ELECTROCHEMICAL REDUCTION; TIN CATHODE; CATALYSTS; ELECTROLYSIS; PERFORMANCE; CONVERSION; OER;
D O I
10.1016/j.jece.2022.109171
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
CO2 electroreduction to formic acid and formate has been focus of great research attention in the last years. Thus, considerable and relevant efforts have been accomplished in this field, mainly by operating with different types of catalysts and electrode configurations in the cathodic compartment. Still, Pt-based anodes, which are expensive and scarce, are typically the preferred materials to carry out the oxygen evolution reaction in alkaline medium. However, it is crucial to search for new materials of lower prices, with high stability, and good performances able to be competitive with traditional Pt-based electrodes. Hence, we study hand-made NiO-based anodes for the continuous CO2 electroreduction for formate in a filter press reactor with a single pass of the reactants through the electrochemical reactor. The use of the NiO-based anodes enhances the results obtained in previous studies with DSA/O-2 anodes, combining excellent values of Faradaic Efficiency for formate of 100 %, and energy consumptions values close to only 200 kWh.kmol(-1). In addition, employing Sustainion (R) as a binder in the fabrication of the anode results in a significant improvement in the durability, maintaining similar performance in terms of key metrics.
引用
收藏
页数:13
相关论文
共 78 条
[1]   Electroreduction of Carbon Dioxide into Formate: A Comprehensive Review [J].
Al-Tamreh, Shaima A. ;
Ibrahim, Mohamed H. ;
El-Naas, Muftah H. ;
Vaes, Jan ;
Pant, Deepak ;
Benamor, Abdelbaki ;
Amhamed, Abdulkarem .
CHEMELECTROCHEM, 2021, 8 (17) :3207-3220
[2]   Bringing value to the chemical industry from capture, storage and use of CO2: A dynamic LCA of formic acid production [J].
Aldaco, Ruben ;
Butnar, Isabela ;
Margallo, Maria ;
Laso, Jara ;
Rumayor, Marta ;
Dominguez-Ramos, Antonio ;
Irabien, Angel ;
Dodds, Paul E. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 663 :738-753
[3]   Establishing Performance Baselines for the Oxygen Evolution Reaction in Alkaline Electrolytes [J].
Anderson, Grace C. ;
Pivovar, Bryan S. ;
Alia, Shaun M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (04)
[4]  
[Anonymous], 2022, COP27 SHARM EL SHEIK
[5]  
[Anonymous], 2022, MORE BAD NEWS PLANET
[6]   On the activity and stability of Sb2O3/Sb nanoparticles for the electroreduction of CO2 toward formate [J].
Avila-Bolivar, Beatriz ;
Montiel, Vicente ;
Solla-Gullon, Jose .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 895
[7]   Electrochemical Reduction of CO2 to Formate on Easily Prepared Carbon-Supported Bi Nanoparticles [J].
Avila-Bolivar, Beatriz ;
Garcia-Cruz, Leticia ;
Montiel, Vicente ;
Solla-Gullon, Jose .
MOLECULES, 2019, 24 (11)
[8]   A Robust, Scalable Platform for the Electrochemical Conversion of CO2 to Formate: Identifying Pathways to Higher Energy Efficiencies [J].
Chen, Yingying ;
Vise, Ashlee ;
Klein, W. Ellis ;
Cetinbas, Firat C. ;
Myers, Deborah J. ;
Smith, Wilson A. ;
Deutsch, Todd G. ;
Neyerlin, K. C. .
ACS ENERGY LETTERS, 2020, 5 (06) :1825-1833
[9]  
Chi LP, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-26124-y
[10]   Direct Water Injection in Catholyte-Free Zero-Gap Carbon Dioxide Electrolyzers [J].
De Mot, Bert ;
Ramdin, Mahinder ;
Hereijgers, Jonas ;
Vlugt, Thijs J. H. ;
Breugelmans, Tom .
CHEMELECTROCHEM, 2020, 7 (18) :3839-3843