Cross-View Attention Interaction Fusion Algorithm for Stereo Super-Resolution

被引:0
作者
Zhang, Yaru [1 ]
Liu, Jiantao [1 ]
Zhang, Tong [2 ]
Zhao, Zhibiao [3 ]
机构
[1] Anhui Univ Sci & Technol, Sch Artificial Intelligence, Huainan 232001, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Energy, Hefei 230031, Peoples R China
[3] Tianjin Univ Technol & Educ, Sch Automat & Elect Engn, Tianjin 300222, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 12期
关键词
stereo super-resolution; convolutional neural network; interaction fusion; attention mechanism; IMAGE; NETWORK; MODULE;
D O I
10.3390/app13127265
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the process of stereo super-resolution reconstruction, in addition to the richness of the extracted feature information directly affecting the texture details of the reconstructed image, the texture details of the corresponding pixels between stereo image pairs also have an important impact on the reconstruction accuracy in the process of network learning. Therefore, aiming at the information interaction and stereo consistency of stereo image pairs, a cross-view attention interaction fusion stereo super-resolution algorithm is proposed. Firstly, based on parallax attention mechanism and triple attention mechanism, an attention stereo fusion module is constructed. The attention stereo fusion module is inserted between different levels of two single image super-resolution network branches, and the attention weight is calculated through the cross dimensional interaction of the three branches. It makes full use of the ability of single image super-resolution network to extract single view information and further maintaining the stereo consistency between stereo image pairs. Then, an enhanced cross-view interaction strategy including three fusion methods is proposed. Specifically, the vertical sparse fusion method is used to integrate the interior view information of different levels in the two single image super-resolution sub branches, the horizontal dense fusion method is used to connect the adjacent attention stereo fusion modules and the constraint between stereo image consistency is further strengthened in combination with the feature fusion method. Finally, the experimental results on Flickr 1024, Middlebury and KITTI benchmark datasets show that the proposed algorithm is superior to the existing stereo image super-resolution methods in quantitative measurement and qualitative visual quality while maintaining the stereo consistency of image pairs.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Image super-resolution via channel attention and spatial attention
    Lu, Enmin
    Hu, Xiaoxiao
    APPLIED INTELLIGENCE, 2022, 52 (02) : 2260 - 2268
  • [42] Image super-resolution via channel attention and spatial attention
    Enmin Lu
    Xiaoxiao Hu
    Applied Intelligence, 2022, 52 : 2260 - 2268
  • [43] Attention-guided multi-path cross-CNN for underwater image super-resolution
    Zhang, Yan
    Yang, Shangxue
    Sun, Yemei
    Liu, Shudong
    Li, Xianguo
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (01) : 155 - 163
  • [44] MAWKDN: A Multimodal Fusion Wavelet Knowledge Distillation Approach Based on Cross-View Attention for Action Recognition
    Quan, Zhenzhen
    Chen, Qingshan
    Zhang, Moyan
    Hu, Weifeng
    Zhao, Qiang
    Hou, Jiangang
    Li, Yujun
    Liu, Zhi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (10) : 5734 - 5749
  • [45] Lightweight single image super-resolution based on multi-path progressive feature fusion and attention mechanism
    Shanshan Li
    Dengwen Zhou
    Yukai Liu
    Dandan Gao
    Wanjun Wang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3517 - 3528
  • [46] Lightweight single image super-resolution based on multi-path progressive feature fusion and attention mechanism
    Li, Shanshan
    Zhou, Dengwen
    Liu, Yukai
    Gao, Dandan
    Wang, Wanjun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (10) : 3517 - 3528
  • [47] Attention-Based Network for Cross-View Gait Recognition
    Huang, Yuanyuan
    Zhang, Jianfu
    Zhao, Haohua
    Zhang, Liqing
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT VII, 2018, 11307 : 489 - 498
  • [48] A Disparity Feature Alignment Module for Stereo Image Super-Resolution
    Dan, Jiawang
    Qu, Zhaowei
    Wang, Xiaoru
    Gu, Jiahang
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1285 - 1289
  • [49] Image super-resolution method based on attention aggregation hierarchy feature
    Wang, Jianxin
    Zou, Yongsong
    Wu, Honglin
    VISUAL COMPUTER, 2024, 40 (04) : 2655 - 2666
  • [50] Hyperspectral anomaly detection via super-resolution reconstruction with an attention mechanism
    Chong, Dan
    Hu, Bingliang
    Gao, Hao
    Gao, Xiaohui
    APPLIED OPTICS, 2021, 60 (26) : 8109 - 8119