Cross-View Attention Interaction Fusion Algorithm for Stereo Super-Resolution

被引:0
作者
Zhang, Yaru [1 ]
Liu, Jiantao [1 ]
Zhang, Tong [2 ]
Zhao, Zhibiao [3 ]
机构
[1] Anhui Univ Sci & Technol, Sch Artificial Intelligence, Huainan 232001, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Energy, Hefei 230031, Peoples R China
[3] Tianjin Univ Technol & Educ, Sch Automat & Elect Engn, Tianjin 300222, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 12期
关键词
stereo super-resolution; convolutional neural network; interaction fusion; attention mechanism; IMAGE; NETWORK; MODULE;
D O I
10.3390/app13127265
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the process of stereo super-resolution reconstruction, in addition to the richness of the extracted feature information directly affecting the texture details of the reconstructed image, the texture details of the corresponding pixels between stereo image pairs also have an important impact on the reconstruction accuracy in the process of network learning. Therefore, aiming at the information interaction and stereo consistency of stereo image pairs, a cross-view attention interaction fusion stereo super-resolution algorithm is proposed. Firstly, based on parallax attention mechanism and triple attention mechanism, an attention stereo fusion module is constructed. The attention stereo fusion module is inserted between different levels of two single image super-resolution network branches, and the attention weight is calculated through the cross dimensional interaction of the three branches. It makes full use of the ability of single image super-resolution network to extract single view information and further maintaining the stereo consistency between stereo image pairs. Then, an enhanced cross-view interaction strategy including three fusion methods is proposed. Specifically, the vertical sparse fusion method is used to integrate the interior view information of different levels in the two single image super-resolution sub branches, the horizontal dense fusion method is used to connect the adjacent attention stereo fusion modules and the constraint between stereo image consistency is further strengthened in combination with the feature fusion method. Finally, the experimental results on Flickr 1024, Middlebury and KITTI benchmark datasets show that the proposed algorithm is superior to the existing stereo image super-resolution methods in quantitative measurement and qualitative visual quality while maintaining the stereo consistency of image pairs.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Light weight image super-resolution combining residual learning and layer attention
    Wu, Difan
    Zhang, Xuande
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2024, 39 (10) : 1391 - 1401
  • [32] Steformer: Efficient Stereo Image Super-Resolution With Transformer
    Lin, Jianxin
    Yin, Lianying
    Wang, Yijun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8396 - 8407
  • [33] Channel attention and residual concatenation network for image super-resolution
    Cai T.-J.
    Peng X.-Y.
    Shi Y.-P.
    Huang J.
    Peng, Xiao-Yu (pengxy96@qq.com), 1600, Chinese Academy of Sciences (29): : 142 - 151
  • [34] Lightweight Attention-Guided Network for Image Super-Resolution
    Ding, Zixuan
    Juan, Zhang
    Xiang, Li
    Wang, Xinyu
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (14)
  • [35] CANS: Combined Attention Network for Single Image Super-Resolution
    Muhammad, Wazir
    Aramvith, Supavadee
    Onoye, Takao
    IEEE ACCESS, 2024, 12 : 167498 - 167517
  • [36] Image Super-Resolution Based on Residual Attention and Multi-Scale Feature Fusion
    Kou, Qiqi
    Zhao, Jiamin
    Cheng, Deqiang
    Su, Zhen
    Zhu, Xingguang
    IEEE ACCESS, 2023, 11 : 59530 - 59541
  • [37] Attention Fusion Generative Adversarial Network for Single-Image Super-Resolution Reconstruction
    Peng Yanfei
    Zhang Pingjia
    Gao Yi
    Zi Lingling
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (20)
  • [38] Attention Network with Information Distillation for Super-Resolution
    Zang, Huaijuan
    Zhao, Ying
    Niu, Chao
    Zhang, Haiyan
    Zhan, Shu
    ENTROPY, 2022, 24 (09)
  • [39] Adaptive Attention Network for Image Super-resolution
    Chen Y.-M.
    Zhou D.-W.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (08): : 1950 - 1960
  • [40] Face image super-resolution with an attention mechanism
    Chen X.
    Shen H.
    Bian Q.
    Wang Z.
    Tian X.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (03): : 148 - 153