Skew-adjacency matrices of tournaments with bounded principal minors

被引:1
|
作者
Boussairi, Abderrahim [1 ]
Ezzahir, Sara [1 ]
Lakhlifi, Soufiane [1 ]
Mahzoum, Soukaina [1 ]
机构
[1] Hassan II Univ Casablanca, Fac Sci Ain Chock, Lab Math Fondamentales & Appl, Casablanca, Morocco
关键词
Tournament; Skew-adjacency matrix; Principal minor; Diamonds; Transitive blowup; ENERGY;
D O I
10.1016/j.disc.2023.113552
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a tournament with n vertices v1, ... , vn. The skew-adjacency matrix of T is the n x n zero-diagonal matrix S = [sij] in which sij = -sji =1 if vi dominates vj. It is well-known that the determinant of S is zero or the square of an odd integer. Moreover, the principal minors of S are at most 1 if and only if T is a local order. In this paper, we characterize the class of tournaments for which the principal minors of the skew-adjacency matrix do not exceed 9.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Almost principal minors of inverse M-matrices
    Johnson, CR
    Smith, RL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 337 (1-3) : 253 - 265
  • [22] Nonnegative definite hermitian matrices with increasing principal minors
    Friedland, Shmuel
    SPECIAL MATRICES, 2013, 1 : 1 - 2
  • [23] HIDDEN Z-MATRICES WITH POSITIVE PRINCIPAL MINORS
    PANG, JS
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 23 (FEB) : 201 - 215
  • [24] On (-1,1)-Matrices of Skew Type with the Maximal Determinant and Tournaments
    Andres Armario, Jose
    ALGEBRAIC DESIGN THEORY AND HADAMARD MATRICES, ADTHM, 2015, 133 : 1 - 11
  • [25] The width and integer optimization on simplices with bounded minors of the constraint matrices
    Gribanov, D. V.
    Chirkov, A. Y.
    OPTIMIZATION LETTERS, 2016, 10 (06) : 1179 - 1189
  • [26] The width and integer optimization on simplices with bounded minors of the constraint matrices
    D. V. Gribanov
    A. Y. Chirkov
    Optimization Letters, 2016, 10 : 1179 - 1189
  • [27] ASYMPTOTIC ANALYSIS FOR EXTREME EIGENVALUES OF PRINCIPAL MINORS OF RANDOM MATRICES
    Cai, T. Tony
    Jiang, Tiefeng
    Li, Xiaoou
    ANNALS OF APPLIED PROBABILITY, 2021, 31 (06): : 2953 - 2990
  • [28] NONNEGATIVITY OF PRINCIPAL MINORS OF GENERALIZED INVERSES OF M-MATRICES
    MOHAN, SR
    NEUMANN, M
    RAMAMURTHY, KG
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 58 (APR) : 247 - 259
  • [29] Products of M-matrices and nested sequences of principal minors
    Grundy, D. A.
    Johnson, C. R.
    Olesky, D. D.
    Van den Driessche, P.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2007, 16 : 380 - 388
  • [30] FIBONACCI AND LUCAS SEQUENCES AS THE PRINCIPAL MINORS OF SOME INFINITE MATRICES
    Moghaddamfar, A. R.
    Pooya, S. M. H.
    Salehy, S. Navid
    Salehy, S. Nima
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2009, 8 (06) : 869 - 883