Skew-adjacency matrices of tournaments with bounded principal minors

被引:1
作者
Boussairi, Abderrahim [1 ]
Ezzahir, Sara [1 ]
Lakhlifi, Soufiane [1 ]
Mahzoum, Soukaina [1 ]
机构
[1] Hassan II Univ Casablanca, Fac Sci Ain Chock, Lab Math Fondamentales & Appl, Casablanca, Morocco
关键词
Tournament; Skew-adjacency matrix; Principal minor; Diamonds; Transitive blowup; ENERGY;
D O I
10.1016/j.disc.2023.113552
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a tournament with n vertices v1, ... , vn. The skew-adjacency matrix of T is the n x n zero-diagonal matrix S = [sij] in which sij = -sji =1 if vi dominates vj. It is well-known that the determinant of S is zero or the square of an odd integer. Moreover, the principal minors of S are at most 1 if and only if T is a local order. In this paper, we characterize the class of tournaments for which the principal minors of the skew-adjacency matrix do not exceed 9.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 14 条
[1]  
Babai L., 2000, Electron. J. Combin, V7, P25, DOI DOI 10.37236/1516
[2]   On unimodular tournaments [J].
Belkouche, Wiam ;
Boussairi, Abderrahim ;
Chaichaa, Abdelhak ;
Lakhlifi, Soufiane .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 632 :50-60
[3]   Matricial characterization of tournaments with maximum number of diamonds [J].
Belkouche, Wiam ;
Boussairi, Abderrahim ;
Lakhlifi, Soufiane ;
Zaidi, Mohamed .
DISCRETE MATHEMATICS, 2020, 343 (04)
[4]  
CAMERON PJ, 1981, J LOND MATH SOC, V23, P249
[5]   Skew-adjacency matrices of graphs [J].
Cavers, M. ;
Cioaba, S. M. ;
Fallat, S. ;
Gregory, D. A. ;
Haemers, W. H. ;
Kirkland, S. J. ;
McDonald, J. J. ;
Tsatsomeros, M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) :4512-4529
[6]  
Cayley Arthur, 1849, Journal fur die reine und angewandte Mathematik, V38, P93
[7]   On the maximum skew spectral radius and minimum skew energy of tournaments [J].
Deng, Bo ;
Li, Xueliang ;
Shader, Bryan ;
So, Wasin .
LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (07) :1434-1441
[8]   TOURNAMENT GAMES AND POSITIVE TOURNAMENTS [J].
FISHER, DC ;
RYAN, J .
JOURNAL OF GRAPH THEORY, 1995, 19 (02) :217-236
[9]   PICK INEQUALITY AND TOURNAMENTS [J].
GREGORY, DA ;
KIRKLAND, SJ ;
SHADER, BL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 186 :15-36
[10]   The skew energy of tournaments [J].
Ito, Keiji .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 518 :144-158