Sorption direct air capture with CO2 utilization

被引:123
|
作者
Jiang, L. [1 ]
Liu, W. [1 ]
Wang, R. Q. [2 ]
Gonzalez-Diaz, A. [3 ]
Rojas-Michaga, M. F. [4 ]
Michailos, S. [5 ]
Pourkashanian, M. [4 ]
Zhang, X. J. [1 ]
Font-Palma, C. [5 ]
机构
[1] Zhejiang Univ, Inst Refrigerat & Cryogen, Key Lab Refrigerat & Cryogen Technol Zhejiang Prov, Hangzhou 310027, Peoples R China
[2] Univ Durham, Sch Engn, Durham DH1 3LE, England
[3] Natl Inst Elect & Clean Energy, Morelos 62490, Mexico
[4] Univ Sheffield, Dept Mech Engn, Sheffields S3 7RD, England
[5] Univ Hull, Sch Engn, Kingston Upon Hull HU6 7RX, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Direct air capture; Sorbent; CO2; utilization; Techno-economic analysis; CARBON-DIOXIDE CAPTURE; ELECTRIC SWING ADSORPTION; GREENHOUSE-GAS EMISSIONS; LIFE-CYCLE ASSESSMENT; LARGE-SCALE CAPTURE; ACTIVATED CARBON; AMBIENT AIR; FLUE-GAS; THERMODYNAMIC ANALYSIS; BIOMASS PRODUCTION;
D O I
10.1016/j.pecs.2022.101069
中图分类号
O414.1 [热力学];
学科分类号
摘要
Direct air capture (DAC) is gathering momentum since it has vast potential and high flexibility to collect CO2 from discrete sources as "synthetic tree" when compared with current CO2 capture technologies, e.g., amine based post-combustion capture. It is considered as one of the emerging carbon capture technologies in recent decades and remains in a prototype investigation stage with many technical challenges to be overcome. The objective of this paper is to comprehensively discuss the state-of-the-art of DAC and CO2 utilization, note unresolved technology bottlenecks, and give investigation perspectives for commercial large-scale applications. Firstly, characteristics of physical and chemical sorbents are evaluated. Then, the representative capture processes, e.g., pressure swing adsorption, temperature swing adsorption and other ongoing absorption chemical loops, are described and compared. Methods of CO2 conversion including synthesis of fuels and chemicals as well as biological utilization are reviewed. Finally, techno-economic analysis and life cycle assessment for DAC application are summarized. Based on research achievements, future challenges of DAC and CO2 conversion are presented, which include providing synthesis guidelines for obtaining sorbents with the desired characteristics, uncovering the mechanisms for different working processes and establishing evaluation criteria in terms of technical and economic aspects.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Direct air capture of CO2 for solar fuel production in flow
    Kar, Sayan
    Kim, Dongseok
    Annuar, Ariffin Bin Mohamad
    Sarma, Bidyut Bikash
    Stanton, Michael
    Lam, Erwin
    Bhattacharjee, Subhajit
    Karak, Suvendu
    Greer, Heather F.
    Reisner, Erwin
    NATURE ENERGY, 2025,
  • [32] Integration of thermochemical water splitting with CO2 direct air capture
    Brady, Casper
    Davis, Mark E.
    Xu, Bingjun
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (50) : 25001 - 25007
  • [33] Electrochemical Conversion of CO2 from Direct Air Capture Solutions
    Gutierrez-Sanchez, Oriol
    de Mot, Bert
    Daems, Nick
    Bulut, Metin
    Vaes, Jan
    Pant, Deepak
    Breugelmans, Tom
    ENERGY & FUELS, 2022, 36 (21) : 13115 - 13123
  • [34] A novel contactor for reducing the cost of direct air capture of CO2
    Tegeler, Ed
    Cui, Yanran
    Masoudi, Mansour
    Bahmanpour, Ali M.
    Colbert, Tyler
    Hensel, Jacob
    Balakotaiah, Vemuri
    CHEMICAL ENGINEERING SCIENCE, 2023, 281
  • [35] Moisture-driven CO2 pump for direct air capture
    Wade, Jennifer L.
    Marques, Horacio Lopez
    Wang, Winston
    Flory, Justin
    Freeman, Benny
    JOURNAL OF MEMBRANE SCIENCE, 2023, 685
  • [36] Nanosilica polyamidoamine dendrimers for enhanced direct air CO2 capture
    Kulkarni, Vaishnavi
    Parthiban, Jayashree
    Singh, Sanjay Kumar
    NANOSCALE, 2024, 16 (35) : 16571 - 16581
  • [37] Direct air capture of CO2 with aqueous peptides and crystalline guanidines
    Custelcean, Radu
    Garrabrant, Kathleen A.
    Agullo, Pierrick
    Williams, Neil J.
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (04):
  • [38] Review on the direct air CO2 capture by microalgae: Bibliographic mapping
    Maghzian, Ali
    Aslani, Alireza
    Zahedi, Rahim
    ENERGY REPORTS, 2022, 8 : 3337 - 3349
  • [39] Hierarchical ion interactions in the direct air capture of CO2 at air/aqueous interfaces
    Premadasa, Uvinduni I.
    Kumar, Nitesh
    Stamberga, Diana
    Bocharova, Vera
    Damron, Joshua T.
    Li, Tianyu
    Roy, Santanu
    Ma, Ying-Zhong
    Bryantsev, Vyacheslav S.
    Doughty, Benjamin
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (16):
  • [40] Climate change mitigation measures for global net-zero emissions and the roles of CO2 capture and utilization and direct air capture
    Akimoto, Keigo
    Sano, Fuminori
    Oda, Junichiro
    Kanaboshi, Haruo
    Nakano, Yuko
    ENERGY AND CLIMATE CHANGE, 2021, 2