Sorption direct air capture with CO2 utilization

被引:128
|
作者
Jiang, L. [1 ]
Liu, W. [1 ]
Wang, R. Q. [2 ]
Gonzalez-Diaz, A. [3 ]
Rojas-Michaga, M. F. [4 ]
Michailos, S. [5 ]
Pourkashanian, M. [4 ]
Zhang, X. J. [1 ]
Font-Palma, C. [5 ]
机构
[1] Zhejiang Univ, Inst Refrigerat & Cryogen, Key Lab Refrigerat & Cryogen Technol Zhejiang Prov, Hangzhou 310027, Peoples R China
[2] Univ Durham, Sch Engn, Durham DH1 3LE, England
[3] Natl Inst Elect & Clean Energy, Morelos 62490, Mexico
[4] Univ Sheffield, Dept Mech Engn, Sheffields S3 7RD, England
[5] Univ Hull, Sch Engn, Kingston Upon Hull HU6 7RX, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Direct air capture; Sorbent; CO2; utilization; Techno-economic analysis; CARBON-DIOXIDE CAPTURE; ELECTRIC SWING ADSORPTION; GREENHOUSE-GAS EMISSIONS; LIFE-CYCLE ASSESSMENT; LARGE-SCALE CAPTURE; ACTIVATED CARBON; AMBIENT AIR; FLUE-GAS; THERMODYNAMIC ANALYSIS; BIOMASS PRODUCTION;
D O I
10.1016/j.pecs.2022.101069
中图分类号
O414.1 [热力学];
学科分类号
摘要
Direct air capture (DAC) is gathering momentum since it has vast potential and high flexibility to collect CO2 from discrete sources as "synthetic tree" when compared with current CO2 capture technologies, e.g., amine based post-combustion capture. It is considered as one of the emerging carbon capture technologies in recent decades and remains in a prototype investigation stage with many technical challenges to be overcome. The objective of this paper is to comprehensively discuss the state-of-the-art of DAC and CO2 utilization, note unresolved technology bottlenecks, and give investigation perspectives for commercial large-scale applications. Firstly, characteristics of physical and chemical sorbents are evaluated. Then, the representative capture processes, e.g., pressure swing adsorption, temperature swing adsorption and other ongoing absorption chemical loops, are described and compared. Methods of CO2 conversion including synthesis of fuels and chemicals as well as biological utilization are reviewed. Finally, techno-economic analysis and life cycle assessment for DAC application are summarized. Based on research achievements, future challenges of DAC and CO2 conversion are presented, which include providing synthesis guidelines for obtaining sorbents with the desired characteristics, uncovering the mechanisms for different working processes and establishing evaluation criteria in terms of technical and economic aspects.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] Direct Air Capture of CO2 by Physisorbent Materials
    Kumar, Amrit
    Madden, David G.
    Lusi, Matteo
    Chen, Kai-Jie
    Daniels, Emma A.
    Curtin, Teresa
    Perry, John J.
    Zaworotko, Michael J.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (48) : 14372 - 14377
  • [22] Spontaneous Cooling Absorption of CO2 by a Polymeric Ionic Liquid for Direct Air Capture
    Wang, Tao
    Hou, Chenglong
    Ge, Kun
    Lackner, Klaus S.
    Shi, Xiaoyang
    Liu, Jun
    Fang, Mengxiang
    Luo, Zhongyang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (17): : 3986 - 3990
  • [23] Pyrrolizidines for direct air capture and CO2 conversion
    Hanusch, Jan M.
    Kerschgens, Isabel P.
    Huber, Florian
    Neuburger, Markus
    Gademann, Karl
    CHEMICAL COMMUNICATIONS, 2019, 55 (07) : 949 - 952
  • [24] Review of CO2 direct air capture adsorbents
    Wang T.
    Dong H.
    Hou C.-L.
    Wang X.-R.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (03): : 462 - 475
  • [25] Review of carbon capture absorbents for CO2 utilization
    Chai, Slyvester Yew Wang
    Ngu, Lock Hei
    How, Bing Shen
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2022, 12 (03) : 394 - 427
  • [26] A review on CO2 capture with chilled ammonia and CO2 utilization in urea plant
    Chehrazi, Mohammad
    Moghadas, Bahareh Kamyab
    JOURNAL OF CO2 UTILIZATION, 2022, 61
  • [27] Direct air capture of CO2 for solar fuel production in flow
    Kar, Sayan
    Kim, Dongseok
    Annuar, Ariffin Bin Mohamad
    Sarma, Bidyut Bikash
    Stanton, Michael
    Lam, Erwin
    Bhattacharjee, Subhajit
    Karak, Suvendu
    Greer, Heather F.
    Reisner, Erwin
    NATURE ENERGY, 2025, : 448 - 459
  • [28] Moisture-driven CO2 pump for direct air capture
    Wade, Jennifer L.
    Marques, Horacio Lopez
    Wang, Winston
    Flory, Justin
    Freeman, Benny
    JOURNAL OF MEMBRANE SCIENCE, 2023, 685
  • [29] Humidity sensitivity reducing of moisture swing adsorbents by hydrophobic carrier doping for CO2 direct air capture
    Dong, Hao
    Wang, Tao
    Wang, Xiaobo
    Liu, Fengsheng
    Hou, Chenglong
    Wang, Zhengfeng
    Liu, Weishan
    Fu, Lin
    Gao, Xiang
    CHEMICAL ENGINEERING JOURNAL, 2023, 466
  • [30] K2CO3 on porous supports for moisture-swing CO2 capture from ambient air
    Zheng, Shiqiang
    Cheng, Xinyue
    Zhou, Wenjia
    Wang, Tong
    Zhu, Liangliang
    Xiao, Hang
    Chen, Xi
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2024, 19 (03)